论文标题

部分可观测时空混沌系统的无模型预测

Sketch2FullStack: Generating Skeleton Code of Full Stack Website and Application from Sketch using Deep Learning and Computer Vision

论文作者

Barua, Somoy Subandhu, Zulkarnain, Imam Mohammad, Roy, Abhishek, Alam, Md. Golam Rabiul, Uddin, Md Zia

论文摘要

对于全栈网络或应用程序开发,它要求软件公司或更具体地说是一组经验丰富的开发人员团队来贡献其大部分时间和资源来设计网站,然后将其转换为代码。结果,开发团队的效率在将UI线框和数据库模式转换为实际的工作系统方面大大降低了。如果客户或开发人员可以自动化此过程,即将预制的全堆栈网站设计自动化以使某些工作代码(即使不完全工作的代码)自动化,则可以节省宝贵的资源并固定整体工作流程。在本文中,我们提出了一种新的方法,该方法是使用深度学习和计算机视觉方法从草图图像中生成骨骼代码的新方法。用于培训的数据集是低忠诚度线框,数据库模式和班级图的第一手草图图像。该方法由三个部分组成。首先,从定制UI线框中检测和提取的前端或UI元素。其次,从模式设计中创建了单个数据库表,最后创建了类图中的类文件。

For a full-stack web or app development, it requires a software firm or more specifically a team of experienced developers to contribute a large portion of their time and resources to design the website and then convert it to code. As a result, the efficiency of the development team is significantly reduced when it comes to converting UI wireframes and database schemas into an actual working system. It would save valuable resources and fasten the overall workflow if the clients or developers can automate this process of converting the pre-made full-stack website design to get a partially working if not fully working code. In this paper, we present a novel approach of generating the skeleton code from sketched images using Deep Learning and Computer Vision approaches. The dataset for training are first-hand sketched images of low fidelity wireframes, database schemas and class diagrams. The approach consists of three parts. First, the front-end or UI elements detection and extraction from custom-made UI wireframes. Second, individual database table creation from schema designs and lastly, creating a class file from class diagrams.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源