论文标题
部分可观测时空混沌系统的无模型预测
Nonexistence of Vortices for Rotating Two-Component Focusing Bose Gases
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
This paper is concerned with ground states of two-component Bose gases confined in a harmonic trap $V(x)=x_1^2+Λ^2 x_2^2$ rotating at the velocity $Ω>0$, where $Λ\ge 1$ and $(x_1, x_2)\in R^2$. We focus on the case where the intraspecies interaction $(-a_1,-a_2)$ and the interspecies interaction $-β$ are both attractive, i.e, $a_1, a_2$ and $β$ are all positive. It is shown that for any $0<Ω<Ω^*:=2$, ground states exist if and only if $0<a_1,\, a_2<a^*:=\|w\|^2_2$ and $0<β<β^*:=a^*+\sqrt{(a^*-a_1)(a^*-a_2)}$, where $w>0$ is the unique positive solution of $-Δw+ w-w^3=0$ in $R^2$. By developing the argument of refined expansions, we further prove the nonexistence of vortices for ground states as $β\nearrowβ^*$, where $0<Ω<Ω^*$ and $0<a_1,\, a_2<a^*$ are fixed.