论文标题
部分可观测时空混沌系统的无模型预测
Vortex dynamics of accelerated flow past a mounted wedge
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
This study is concerned with the simulation of a complex fluid flow problem involving flow past a wedge mounted on a wall for channel Reynolds numbers $Re_c=1560$, $6621$ and $6873$ in uniform and accelerated flow medium. The transient Navier-Stokes (N-S) equations governing the flow has been discretized using a recently developed second order spatially and temporally accurate compact finite difference method on a nonuniform Cartesian grid by the authors. All the flow characteristics of a well-known laboratory experiment of Pullin and Perry (1980) have been remarkably well captured by our numerical simulation, and we provide a qualitative and quantitative assessment of the same. Furthermore, the influence of the parameter $m$, controlling the intensity of acceleration, has been discussed in detail along with the intriguing consequence of non-dimensionalization of the N-S equations pertaining to such flows. The simulation of the flow across a time span significantly greater than the aforesaid lab experiment is the current study's most noteworthy accomplishment. For the accelerated flow, the onset of shear layer instability leading to a more complicated flow towards transition to turbulence have also been aptly resolved. The existence of coherent structures in the flow validates the quality of our simulation, as does the remarkable similarity of our simulation to the high Reynolds number experimental results of Lian and Huang (1989) for the accelerated flow across a typical flat plate. All three steps of vortex shedding, including the exceedingly intricate three-fold structure, have been captured quite efficiently.