论文标题

出现:通过子结构意识在归因网络上图形异常检测

ARISE: Graph Anomaly Detection on Attributed Networks via Substructure Awareness

论文作者

Duan, Jingcan, Xiao, Bin, Wang, Siwei, Zhou, Haifang, Liu, Xinwang

论文摘要

最近,归因网络上的图形异常检测引起了数据挖掘和机器学习社区的越来越多的关注。除属性异常外,图异常检测还针对表现出集体异常行为的可疑拓扑 - 非凡的节点。紧密连接的不相关节点组在网络中形成了不常见的密度子结构。但是,现有方法忽略了拓扑异常检测性能可以通过识别这种集体模式来提高。为此,我们通过子结构意识(用于缩写)提出了归因网络上的新图异常检测框架。与以前的算法不同,我们专注于图中的子结构以辨别异常。具体而言,我们建立了一个区域建议模块,以发现网络中的高密度子结构作为可疑区域。平均节点对相似性可以被视为子结构中节点的拓扑异常程度。通常,相似性越低,内部节点是拓扑异常的可能性越高。为了提炼节点属性的更好嵌入,我们进一步引入了图形对比学习方案,该方案在此期间观察属性异常。这样,ARISE可以检测拓扑和属性异常。最终,与最先进的属性网络异常检测(ANAD)算法相比,基准数据集上的大量实验表明,出现大大提高了检测性能(高达7.30%的AUC和17.46%的AUPRC增益)。

Recently, graph anomaly detection on attributed networks has attracted growing attention in data mining and machine learning communities. Apart from attribute anomalies, graph anomaly detection also aims at suspicious topological-abnormal nodes that exhibit collective anomalous behavior. Closely connected uncorrelated node groups form uncommonly dense substructures in the network. However, existing methods overlook that the topology anomaly detection performance can be improved by recognizing such a collective pattern. To this end, we propose a new graph anomaly detection framework on attributed networks via substructure awareness (ARISE for abbreviation). Unlike previous algorithms, we focus on the substructures in the graph to discern abnormalities. Specifically, we establish a region proposal module to discover high-density substructures in the network as suspicious regions. The average node-pair similarity can be regarded as the topology anomaly degree of nodes within substructures. Generally, the lower the similarity, the higher the probability that internal nodes are topology anomalies. To distill better embeddings of node attributes, we further introduce a graph contrastive learning scheme, which observes attribute anomalies in the meantime. In this way, ARISE can detect both topology and attribute anomalies. Ultimately, extensive experiments on benchmark datasets show that ARISE greatly improves detection performance (up to 7.30% AUC and 17.46% AUPRC gains) compared to state-of-the-art attributed networks anomaly detection (ANAD) algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源