论文标题

信号混合物与可区分词典的概率建模

Probabilistic Modelling of Signal Mixtures with Differentiable Dictionaries

论文作者

Marták, Lukáš Samuel, Kelz, Rainer, Widmer, Gerhard

论文摘要

我们介绍了一种新颖的方式,将先前的信息纳入(半)监督的非负矩阵分解中,我们称之为可区分的字典搜索。它使一般,高度柔韧性和原则性建模对非线性源是线性混合的混合物。我们研究其在音频分解任务上的行为,并对其建模能力进行广泛的,高度对照的研究。

We introduce a novel way to incorporate prior information into (semi-) supervised non-negative matrix factorization, which we call differentiable dictionary search. It enables general, highly flexible and principled modelling of mixtures where non-linear sources are linearly mixed. We study its behavior on an audio decomposition task, and conduct an extensive, highly controlled study of its modelling capabilities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源