论文标题
3D场景实例分割的SuperPoint变压器
Superpoint Transformer for 3D Scene Instance Segmentation
论文作者
论文摘要
大多数现有方法通过扩展用于3D对象检测或3D语义分割的那些模型来实现3D实例细分。但是,这些非差异方法具有两个缺点:1)不精确的边界框或不令人满意的语义预测限制了整个3D实例细分框架的性能。 2)现有方法需要耗时的聚合中间步骤。为了解决这些问题,本文提出了一种基于SuperPoint Transformer的新型端到端3D实例分割方法,称为SPFormer。 IT将潜在的特征分组为从点云中的最高点,并通过查询向量直接预测实例,而无需依赖对象检测或语义分割的结果。该框架的关键步骤是具有变压器的新型查询解码器,可以通过超级点跨注意机制捕获实例信息,并生成实例的超级点掩码。通过基于SuperPoint掩码的双方匹配,SPFORMER可以实现网络培训,而无需中间聚合步骤,从而加速了网络。 ScannETV2和S3DIS基准的广泛实验验证了我们的方法是否简洁而有效。值得注意的是,Spformer在ScannETV2隐藏测试集上以MAP的形式比较了最新方法,并同时保持快速推理速度(每帧247ms)。代码可从https://github.com/sunjiahao1999/spformer获得。
Most existing methods realize 3D instance segmentation by extending those models used for 3D object detection or 3D semantic segmentation. However, these non-straightforward methods suffer from two drawbacks: 1) Imprecise bounding boxes or unsatisfactory semantic predictions limit the performance of the overall 3D instance segmentation framework. 2) Existing method requires a time-consuming intermediate step of aggregation. To address these issues, this paper proposes a novel end-to-end 3D instance segmentation method based on Superpoint Transformer, named as SPFormer. It groups potential features from point clouds into superpoints, and directly predicts instances through query vectors without relying on the results of object detection or semantic segmentation. The key step in this framework is a novel query decoder with transformers that can capture the instance information through the superpoint cross-attention mechanism and generate the superpoint masks of the instances. Through bipartite matching based on superpoint masks, SPFormer can implement the network training without the intermediate aggregation step, which accelerates the network. Extensive experiments on ScanNetv2 and S3DIS benchmarks verify that our method is concise yet efficient. Notably, SPFormer exceeds compared state-of-the-art methods by 4.3% on ScanNetv2 hidden test set in terms of mAP and keeps fast inference speed (247ms per frame) simultaneously. Code is available at https://github.com/sunjiahao1999/SPFormer.