论文标题
第二磁化峰,异常田间渗透和kca $ _2 $ fe $ _4 $ as $ _4 $ f $ _2 $ bylayer biLayer pnictide超导体
Second magnetization peak, anomalous field penetration, and Josephson vortices in KCa$_2$Fe$_4$As$_4$F$_2$ bilayer pnictide superconductor
论文作者
论文摘要
我们在各向异性双层pnictide pnictide kca $ _2 $ _2 $ fe $ _4 $ AS $ _4 $ f $ _2 $中进行了磁化测量,带有$ t_c $ \ $ \ simeq $ 34 k,适用于$ h $ h $ h $ h $ \ $ c $ - $ - $ - 在$ h $$ \ parallel $$ $ ab $ planes中,在等温$ m(h)$曲线中观察到第二个磁化峰(SMP)。临界电流密度的温度变化的峰值$ j_ {c} $($ t $)在16 K处强烈表明在较低温度下的约瑟夫森涡流出现,这导致样本中的SMP。此外,注意到,约瑟夫森涡流的外观低于16 k,使磁通渗透渗透易于磁通。一项详细的涡流动力学研究表明,可以用弹性固定到塑料固定跨界的弹性来解释SMP。此外,与共同的理解相反,第一个峰场的温度变化$ h_1 $,低于和高于16 K,是非单调的。在极大的第一峰场域周围的一个田间区域内,已经观察到了由塑料钉夹在17 K和23 K之间的高度无序的涡流相。固定力缩放表明,点缺陷是$ h $ $ \ $ \ parallel $$ ab $ - 平面的主要固定来源,而对于H $ \ parallel $ \ $$ C $ -X轴,除了表面缺陷外,点缺陷是在发挥作用。由于电荷载体的平均自由路径的变化$δ$$ l $ pinning,这种疾病会导致固定。此外,在我们的研究中观察到的大$ J_C $与文献一致,该文献提倡该材料用于高磁场应用。
We performed magnetization measurements in a single crystal of the anisotropic bilayer pnictide superconductor KCa$_2$Fe$_4$As$_4$F$_2$, with $T_c$ $\simeq$ 34 K, for $H$$\parallel$$c$-axis and $H$$\parallel$$ab$-planes. A second magnetization peak (SMP) was observed in the isothermal $M(H)$ curves measured below 16 K for $H$$\parallel$$ab$-planes. A peak in the temperature variation of the critical current density, $J_{c}$($T$), at 16 K, strongly suggests the emergence of Josephson vortices at lower temperatures, which leads to the SMP in the sample. In addition, it is noticed that the appearance of Josephson vortices below 16 K renders easy magnetic flux penetration. A detailed vortex dynamics study suggests that the SMP can be explained in terms of elastic pinning to plastic pinning crossover. Furthermore, contrary to the common understanding, the temperature variation of the first peak field, $H_1$, below and above 16 K, behaves non-monotonically. A highly disordered vortex phase, governed by plastic pinning, has been observed between 17 K and 23 K, within a field region around an extremely large first peak field. Pinning force scaling suggests that the point defects are the dominant source of pinning for $H$ $\parallel$$ab$-planes, whereas, for H $\parallel$$c$-axis, point defects in addition to surface defects are at play. Such disorder contributes to the pinning due to the variation in charge carrier mean free path, $δ$$l$-pinning. Moreover, the large $J_c$ observed in our study is consistent with the literature, which advocates this material for high magnetic field applications.