论文标题
基于组成的氧化状态对材料的预测使用深度学习
Composition based oxidation state prediction of materials using deep learning
论文作者
论文摘要
氧化状态是原子的离子键近似后的电荷,其键键已被广泛用于电荷 - 中性验证,晶体结构的测定和反应估计。目前,猜测给定化合物的氧化状态只有许多例外。最近的工作已经基于启发式结构特征开发了机器学习模型,以预测金属离子的氧化态。但是,到目前为止,基于组成的氧化状态预测仍然难以捉摸,这在结构甚至无法可用的新材料发现中更为重要。这项工作提出了一种新型的基于深度学习的BERT变压器语言模型Bertos,以预测仅鉴于其化学组成的无机化合物的所有元素的氧化态。我们的模型达到了96.82 \%的准确性,用于在清洁的ICSD数据集上进行的全元素氧化状态预测,并实现了氧化物材料的97.61 \%精度。我们还展示了如何用于对假设材料的大规模筛选以进行材料发现。
Oxidation states are the charges of atoms after their ionic approximation of their bonds, which have been widely used in charge-neutrality verification, crystal structure determination, and reaction estimation. Currently only heuristic rules exist for guessing the oxidation states of a given compound with many exceptions. Recent work has developed machine learning models based on heuristic structural features for predicting the oxidation states of metal ions. However, composition based oxidation state prediction still remains elusive so far, which is more important in new material discovery for which the structures are not even available. This work proposes a novel deep learning based BERT transformer language model BERTOS for predicting the oxidation states of all elements of inorganic compounds given only their chemical composition. Our model achieves 96.82\% accuracy for all-element oxidation states prediction benchmarked on the cleaned ICSD dataset and achieves 97.61\% accuracy for oxide materials. We also demonstrate how it can be used to conduct large-scale screening of hypothetical material compositions for materials discovery.