论文标题

Y2O3薄层的纳米晶多晶型物的电子能结构的比较分析:理论和实验

Comparative Analysis of the Electronic Energy Structure of Nanocrystalline Polymorphs of Y2O3 Thin Layers: Theory and Experiments

论文作者

Boukhvalov, D. W., Zatsepin, D. A., Kuznetsova, Yu. A., Gavrilov, N. V., Zatsepin, A. F.

论文摘要

据报道,在立方和单斜相结构中,Y2O3的纳米晶体薄层的原子结构的制造和表征的结果。实验数据表明,对于立方体和单斜层研究的结构,平均晶粒尺寸约为10-14 nm的纳米晶膜中的结晶有序。基于密度功能理论(DFT)的模拟表明,这些阶段在整体和表面上的电子结构无关。理论建模还指出,与实验数据一致的能量水平分裂(X射线光电子和光致发光光谱)引起的价值和导电条带的显着拓宽了。对于两个研究的相位,各种固有和外在缺陷(包括碳单氧化物和二氧化碳的表面吸附)不会促进Y2O3表面电子结构的可见变化。光吸收和发光测量表明,Y2O3纳米晶层的带隙降低,缺陷状态的贡献很小。外在压缩和扩展的模拟表明,即使在显着应变下,纳米晶体Y2O3的电子结构的稳定性也表明。综合研究的结果表明,基于Yttrium氧化物的纳米晶体层是各种光学应用作为稳定材料的前瞻性。

The results of fabrication and characterization of atomic structure of nanocrystalline thin layers of Y2O3 in cubic and monoclinic phases is reported. Experimental data demonstrate crystalline ordering in nanocrystalline films with average grain size of ~10-14 nm both for cubic and monoclinic studied structures. Density Functional Theory (DFT) based simulations demonstrate insignificant differences of electronic structure of these phases in the bulk and on the surfaces. Theoretical modeling also pointed out the significant broadening of valence and conductive bands caused by means of energy levels splitting in agreement with experimental data (X-ray photoelectron and photoluminescence spectra). The presence of various intrinsic and extrinsic defects (including surface adsorption of carbon mono- and dioxide) does not promote visible changes in electronic structure of Y2O3 surface for both studied phases. Optical absorption and luminescence measurements indicate insignificant bandgap reduction of Y2O3 nanocrystalline layers and the very little contribution from defect states. Simulation of extrinsic compression and expanding demonstrate stability of the electronic structure of nanocrystalline Y2O3 even under significant strain. Results of comprehensive studies demonstrate that yttrium oxide based nanocrystalline layers are prospective for various optical applications as a stable material.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源