论文标题
在准限制平坦组方案下延长扭矩
Extending torsors under quasi-finite flat group schemes
论文作者
论文摘要
让$ r $是分数$ k $的离散估值环和残留场$ k $的特征性$ p> 0 $。 在较早的工作中,我们研究了一个问题,即在Torsor的结构性$ k $ - 组方案中,将$ k $ curves上的扭转量扩展到折叠型曲线型曲线的扭矩上,这是Torsor的结构性$ k $ group Schement,该方案承认了$ r $ $ $ $的有限平面型号。在本文中,我们首先对曲线可以半固定的情况进行了更简单的描述。其次,如果假定$ r $是Henselian和Japanese,我们也可以解决扩展托架的问题,即使结构组不承认有限的扁平$ r $ r $ -model。
Let $R$ be a discrete valuation ring of field of fractions $K$ and of residue field $k$ of characteristic $p > 0$. In an earlier work, we studied the question of extending torsors on $K$-curves into torsors over $R$-regular models of the curves in the case when the structural $K$-group scheme of the torsor admits a finite flat model over $R$. In this paper, we first give a simpler description of the problem in the case where the curve is semistable. Secondly, if $R$ is assumed to be Henselian and Japanese, we solve the problem of extending torsors even if the structural group does not admit a finite flat $R$-model.