论文标题

分布式检测并不是您需要的

Out-Of-Distribution Detection Is Not All You Need

论文作者

Guérin, Joris, Delmas, Kevin, Ferreira, Raul Sena, Guiochet, Jérémie

论文摘要

深层神经网络在安全至关重要系统中的使用受到我们保证其正确行为的能力的限制。运行时监控器是旨在识别不安全预测并丢弃它们的组件,然后才能导致灾难性后果。关于运行时监视的最近几项工作集中在分布外(OOD)检测上,即确定与培训数据不同的输入。在这项工作中,我们认为OOD检测不是设计有效的运行时监视器的非常适合的框架,并且根据其丢弃错误预测的能力来评估监视器更相关。我们称此设置为Ofmodel-Scope检测,并与OOD讨论概念上的差异。我们还对文献中流行数据集进行了广泛的实验,以表明在OOD设置中的研究监视器可能会产生误导:1。非常好的OOD结果可以给人以下的安全印象,2。在OOD设置下进行比较,不允许识别最佳监视器来检测错误。最后,我们还表明,删除错误的培训数据样本有助于培训更好的监视器。

The usage of deep neural networks in safety-critical systems is limited by our ability to guarantee their correct behavior. Runtime monitors are components aiming to identify unsafe predictions and discard them before they can lead to catastrophic consequences. Several recent works on runtime monitoring have focused on out-of-distribution (OOD) detection, i.e., identifying inputs that are different from the training data. In this work, we argue that OOD detection is not a well-suited framework to design efficient runtime monitors and that it is more relevant to evaluate monitors based on their ability to discard incorrect predictions. We call this setting out-ofmodel-scope detection and discuss the conceptual differences with OOD. We also conduct extensive experiments on popular datasets from the literature to show that studying monitors in the OOD setting can be misleading: 1. very good OOD results can give a false impression of safety, 2. comparison under the OOD setting does not allow identifying the best monitor to detect errors. Finally, we also show that removing erroneous training data samples helps to train better monitors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源