论文标题

可扩展的层次实行联合学习

Scalable Hierarchical Over-the-Air Federated Learning

论文作者

Azimi-Abarghouyi, Seyed Mohammad, Fodor, Viktoria

论文摘要

当通过无线网络实施分层联合学习时,可扩展性保证以及处理干扰和设备数据异质性的能力至关重要。这项工作介绍了一种新的两级学习方法,旨在解决这些挑战,以及针对上行链路链路的可扩展的空中聚合方案,以及一个有效使用单个无线资源的下行链路的带宽有限的广播方案。为了提供对数据异质性的抵抗力,我们采用梯度聚集。同时,上行链路和下行链路干扰的影响通过优化的接收器归一化因素最小化。我们提出了一种全面的数学方法,可以得出针对所提出的算法绑定的融合,该算法适用于涵盖任何协作群集计数的多群集无线网络,并提供特殊情况和设计评论。作为启用可进行分析的关键步骤,我们通过将设备建模为边缘服务器上的Poisson群集过程来开发设置的空间模型,并由于干扰而严格量化上行链路链接和下行链接错误项。最后,我们表明,尽管有干扰和数据异质性,但所提出的算法不仅可以达到各种参数的高学习准确性,而且还显着优于传统的层次学习算法。

When implementing hierarchical federated learning over wireless networks, scalability assurance and the ability to handle both interference and device data heterogeneity are crucial. This work introduces a new two-level learning method designed to address these challenges, along with a scalable over-the-air aggregation scheme for the uplink and a bandwidth-limited broadcast scheme for the downlink that efficiently use a single wireless resource. To provide resistance against data heterogeneity, we employ gradient aggregations. Meanwhile, the impact of uplink and downlink interference is minimized through optimized receiver normalizing factors. We present a comprehensive mathematical approach to derive the convergence bound for the proposed algorithm, applicable to a multi-cluster wireless network encompassing any count of collaborating clusters, and provide special cases and design remarks. As a key step to enable a tractable analysis, we develop a spatial model for the setup by modeling devices as a Poisson cluster process over the edge servers and rigorously quantify uplink and downlink error terms due to the interference. Finally, we show that despite the interference and data heterogeneity, the proposed algorithm not only achieves high learning accuracy for a variety of parameters but also significantly outperforms the conventional hierarchical learning algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源