论文标题

三合会时间指数随机图模型(TTERGM)

Triadic Temporal Exponential Random Graph Models (TTERGM)

论文作者

Huang, Yifan, Barham, Clayton, Page, Eric, Douglas, PK

论文摘要

时间指数随机图模型(TEGM)是强大的统计模型,可用于推断复杂网络中边缘形成和消除的时间模式(例如,社交网络)。 Tergm也可以以生成能力来预测这些不断发展的图中的纵向时间序列数据。但是,该框架中的参数估计无法捕获社交网络的许多真实属性,包括:三合会关系,小世界特征和社会学习理论,可用于约束二元协变量的概率估计。在这里,我们提出了三元时间的时间指数随机图模型(TTERGM),以填充此空白,其中包括图形模型中的这些层次网络关系。我们代表社交网络学习理论是一种优化图形矢量空间中马尔可夫链的附加概率分布。然后,通过Monte Carlo最大似然估计来近似新参数。我们表明,与GitHub网络数据上的几种基准方法相比,我们的TTERGM模型可以提高忠诚度和更准确的预测。

Temporal exponential random graph models (TERGM) are powerful statistical models that can be used to infer the temporal pattern of edge formation and elimination in complex networks (e.g., social networks). TERGMs can also be used in a generative capacity to predict longitudinal time series data in these evolving graphs. However, parameter estimation within this framework fails to capture many real-world properties of social networks, including: triadic relationships, small world characteristics, and social learning theories which could be used to constrain the probabilistic estimation of dyadic covariates. Here, we propose triadic temporal exponential random graph models (TTERGM) to fill this void, which includes these hierarchical network relationships within the graph model. We represent social network learning theory as an additional probability distribution that optimizes Markov chains in the graph vector space. The new parameters are then approximated via Monte Carlo maximum likelihood estimation. We show that our TTERGM model achieves improved fidelity and more accurate predictions compared to several benchmark methods on GitHub network data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源