论文标题
Van Daele的K理论的几何构造
Geometric construction of classes in van Daele's K-theory
论文作者
论文摘要
我们描述了Van Daele图片中“真实”领域的“真实” K理论的显式发电机。将这些发电机沿着从Tori到球体的合适地图拉回,从而产生了用于拓扑绝缘体物理文献中使用的哈密顿家族。我们基于K理论的错误函数和Bivariant K理论的几何版本的几何计算类别的K理论类,我们将其扩展到“真实”情况。
We describe explicit generators for the "real" K-theory of "real" spheres in van Daele's picture. Pulling these generators back along suitable maps from tori to spheres produces a family of Hamiltonians used in the physics literature on topological insulators. We compute their K-theory classes geometrically, based on wrong-way functoriality of K-theory and the geometric version of bivariant K-theory, which we extend to the "real" case.