论文标题
邻居校正进行深度度量学习
Intra-class Adaptive Augmentation with Neighbor Correction for Deep Metric Learning
论文作者
论文摘要
深度度量学习旨在学习一个嵌入式空间,在语义上相似的样本彼此近距离,并且不同的样本会反对。为了探索更艰苦而有用的培训信号以增加和概括,最近的方法着重于生成合成样本以增加公制学习损失。但是,这些方法仅使用确定性和与阶级无关的世代(例如,简单的线性插值),它只能覆盖原始样本周围的分布空间的有限部分。他们忽略了不同类别的广泛特征变化,无法为世代建模丰富的类内变化。因此,产生的样本不仅缺乏某些类别的富裕语义,而且可能是干扰训练的嘈杂信号。在本文中,我们提出了一个新型的阶层内适应性增强(IAA)框架,用于深度度量学习。我们可以合理地估计每个类别的类内变化,并生成自适应合成样品,以支持硬样品采矿并增强度量学习损失。此外,对于大多数在类中包含一些样本的数据集而言,根据我们的相关性发现,我们建议邻居校正来修改估计不准确的估计,这些发现通常具有相似的变化分布。在五个基准上进行的广泛实验表明,我们的方法显着改善,并超过了检索性能的最先进方法3%-6%。我们的代码可从https://github.com/darkpromise98/iaa获得
Deep metric learning aims to learn an embedding space, where semantically similar samples are close together and dissimilar ones are repelled against. To explore more hard and informative training signals for augmentation and generalization, recent methods focus on generating synthetic samples to boost metric learning losses. However, these methods just use the deterministic and class-independent generations (e.g., simple linear interpolation), which only can cover the limited part of distribution spaces around original samples. They have overlooked the wide characteristic changes of different classes and can not model abundant intra-class variations for generations. Therefore, generated samples not only lack rich semantics within the certain class, but also might be noisy signals to disturb training. In this paper, we propose a novel intra-class adaptive augmentation (IAA) framework for deep metric learning. We reasonably estimate intra-class variations for every class and generate adaptive synthetic samples to support hard samples mining and boost metric learning losses. Further, for most datasets that have a few samples within the class, we propose the neighbor correction to revise the inaccurate estimations, according to our correlation discovery where similar classes generally have similar variation distributions. Extensive experiments on five benchmarks show our method significantly improves and outperforms the state-of-the-art methods on retrieval performances by 3%-6%. Our code is available at https://github.com/darkpromise98/IAA