论文标题
locposenet:未见物体姿势估计的稳健位置
LocPoseNet: Robust Location Prior for Unseen Object Pose Estimation
论文作者
论文摘要
对象位置先验对于标准6D对象姿势估计设置至关重要。先验可用于初始化3D对象翻译并促进3D对象旋转估计。不幸的是,用于此目的的对象检测器不会概括为看不见的对象。因此,现有的6D构姿势估计方法是未见对象假设要知道的地面对象位置,或者在无法使用时产生不准确的结果。在本文中,我们通过开发一种方法(locposenet)来解决此问题,能够在看不见的对象的先验之前就可以稳健地学习位置。我们的方法建立在模板匹配策略的基础上,我们建议在其中分发参考内核,并通过查询来进行查询以有效计算多尺度相关性。然后,我们介绍了一个新颖的翻译估计器,该估计量将其分解尺度感知和比例射击特征,以预测不同的对象位置参数。我们的方法在LineMod和GenMop上的大幅度优于现有作品。我们进一步构建了一个具有挑战性的合成数据集,这使我们能够突出各种噪声源的方法更好的鲁棒性。我们的项目网站是:https://sailor-z.github.io/projects/3dv2024_locposenet.html。
Object location prior is critical for the standard 6D object pose estimation setting. The prior can be used to initialize the 3D object translation and facilitate 3D object rotation estimation. Unfortunately, the object detectors that are used for this purpose do not generalize to unseen objects. Therefore, existing 6D pose estimation methods for unseen objects either assume the ground-truth object location to be known or yield inaccurate results when it is unavailable. In this paper, we address this problem by developing a method, LocPoseNet, able to robustly learn location prior for unseen objects. Our method builds upon a template matching strategy, where we propose to distribute the reference kernels and convolve them with a query to efficiently compute multi-scale correlations. We then introduce a novel translation estimator, which decouples scale-aware and scale-robust features to predict different object location parameters. Our method outperforms existing works by a large margin on LINEMOD and GenMOP. We further construct a challenging synthetic dataset, which allows us to highlight the better robustness of our method to various noise sources. Our project website is at: https://sailor-z.github.io/projects/3DV2024_LocPoseNet.html.