论文标题
化学反应,可压缩的Euler方程,具有阳性和熵结合的不连续的Galerkin方法。第二部分:多维案例
Positivity-preserving and entropy-bounded discontinuous Galerkin method for the chemically reacting, compressible Euler equations. Part II: The multidimensional case
论文作者
论文摘要
在我们两部分论文的第二部分中,我们扩展到多个空间维度,一维,完全保守,具有积极性和熵结合的不连续的不连续的Galerkin方案,用于化学反应的Euler方程。我们的主要目的是使用高阶不连续的盖尔金方法实现强大而准确的解决方案,以使复杂的反应流问题无需极高的分辨率。考虑了可变的热力学和详细的化学。我们的多维框架可以被视为对文献中相似的具有阳性性的和/或熵结合的不连续的Galerkin方案的进一步概括。特别是,所提出的配方与任意形状,多种数值通量函数,具有正权重的一般正交规则以及热气体的混合物的弯曲元素兼容。讨论了相邻元素之间的压力平衡,尤其是在多组分流的模拟中至关重要的。使用高阶多项式准确计算两个和三个维度中的复杂爆炸波。发现熵结合的执行,而不是仅仅是阳性特性,可显着提高稳定性。质量,总能量和原子元素被证明是离散保守的。
In this second part of our two-part paper, we extend to multiple spatial dimensions the one-dimensional, fully conservative, positivity-preserving, and entropy-bounded discontinuous Galerkin scheme developed in the first part for the chemically reacting Euler equations. Our primary objective is to enable robust and accurate solutions to complex reacting-flow problems using the high-order discontinuous Galerkin method without requiring extremely high resolution. Variable thermodynamics and detailed chemistry are considered. Our multidimensional framework can be regarded as a further generalization of similar positivity-preserving and/or entropy-bounded discontinuous Galerkin schemes in the literature. In particular, the proposed formulation is compatible with curved elements of arbitrary shape, a variety of numerical flux functions, general quadrature rules with positive weights, and mixtures of thermally perfect gases. Preservation of pressure equilibrium between adjacent elements, especially crucial in simulations of multicomponent flows, is discussed. Complex detonation waves in two and three dimensions are accurately computed using high-order polynomials. Enforcement of an entropy bound, as opposed to solely the positivity property, is found to significantly improve stability. Mass, total energy, and atomic elements are shown to be discretely conserved.