论文标题
小精灵,树木和量子步行
Elfs, trees and quantum walks
论文作者
论文摘要
我们研究基于电流采样(ELFS)的图表上的基本马尔可夫过程。 ELFS从图上的电流中反复采样。当固定流量的水槽时,使用电流样品更新源,并且在撞击水槽顶点时该过程结束。 我们认为,这个过程自然地连接到许多关键的关键兴趣。例如,我们描述了一个随机步行耦合,这意味着ELFS过程的到达分布与随机步行相同。我们还分析了电动击球时间,这是该过程撞击水槽顶点之前的预期时间。作为我们的主要技术贡献,我们表明在树木上的电动时间在图形尺寸和重量上是对数。 ELFS过程背后的最初动机是,量子步行可以从电流中取样,因此它们可以非常自然地实施此过程。这产生了一种从随机步行到达分布中进行采样的量子步行算法,该算法具有广泛的应用。它补充了仅从接收器返回元素的量子步行搜索算法的现有行,但对返回元素的分布没有任何见解。通过我们在树上的电击时间上的界限,树木上的量子步行算法比随机步行的时间少于四个步骤,直到各种速度因素。
We study an elementary Markov process on graphs based on electric flow sampling (elfs). The elfs process repeatedly samples from an electric flow on a graph. While the sinks of the flow are fixed, the source is updated using the electric flow sample, and the process ends when it hits a sink vertex. We argue that this process naturally connects to many key quantities of interest. E.g., we describe a random walk coupling which implies that the elfs process has the same arrival distribution as a random walk. We also analyze the electric hitting time, which is the expected time before the process hits a sink vertex. As our main technical contribution, we show that the electric hitting time on trees is logarithmic in the graph size and weights. The initial motivation behind the elfs process is that quantum walks can sample from electric flows, and they can hence implement this process very naturally. This yields a quantum walk algorithm for sampling from the random walk arrival distribution, which has widespread applications. It complements the existing line of quantum walk search algorithms which only return an element from the sink, but yield no insight in the distribution of the returned element. By our bound on the electric hitting time on trees, the quantum walk algorithm on trees requires quadratically fewer steps than the random walk hitting time, up to polylog factors.