论文标题
计量不变的唯一定理,用于$ p $ graphs
Gauge-invariant uniqueness theorems for $P$-graphs
论文作者
论文摘要
我们证明了标题中结果的一个版本,该版本利用在离散组的上下文中使用最大共线。较早的规格不变性唯一定理,用于$ c^*$ - 代数与$ p $ -graphs相关的代数和类似的$ c^*$ - 代数 - 代数利用了称为正态性的共同属性。在本文中,观点是,最大共同术提供了一个更自然的起点来陈述和证明这种唯一性定理。我们方法的副产品包括对离散组的倒车捆绑包的共同表示表示的抽象表征。
We prove a version of the result in the title that makes use of maximal coactions in the context of discrete groups. Earlier Gauge-Invariant Uniqueness theorems for $C^*$-algebras associated to $P$-graphs and similar $C^*$-algebras exploited a property of coactions known as normality. In the present paper, the view point is that maximal coactions provide a more natural starting point to state and prove such uniqueness theorems. A byproduct of our approach consists of an abstract characterization of co-universal representations for a Fell bundle over a discrete group.