论文标题

关于拓扑阶段的大汉密尔顿人模量空间的拓扑拓扑

On Topology of the Moduli Space of Gapped Hamiltonians for Topological Phases

论文作者

Hsin, Po-Shen, Wang, Zhenghan

论文摘要

处于同一拓扑阶段的大汉密尔顿人的模量空间是与拓扑顺序相关的内在对象。这些模量空间的拓扑结构最近用于构建Floquet代码。我们提出了一个系统的程序来研究这些模量空间的拓扑。特别是,我们使用有效的田间理论来研究这些空间的共同体学类别,其中包括并推广浆果阶段。我们讨论了研究相变的几种应用。我们表明,具有相同拓扑顺序的间隙系统的非平凡家族可以保护相图中的孤立相变,我们认为相变的特征是筛查拓扑缺陷。我们认为,ged式系统家族遵守了散装式信函的一种版本。我们表明,与相同的拓扑顺序的散装系统的家庭家庭可以排除在边界上与相同的拓扑边界条件的散布系统家族,从而限制了边界上的相变。

The moduli space of gapped Hamiltonians that are in the same topological phase is an intrinsic object that is associated to the topological order. The topology of these moduli spaces is used recently in the construction of Floquet codes. We propose a systematical program to study the topology of these moduli spaces. In particular, we use effective field theory to study the cohomology classes of these spaces, which includes and generalizes the Berry phase. We discuss several applications to studying phase transitions. We show that nontrivial family of gapped systems with the same topological order can protect isolated phase transitions in the phase diagram, and we argue that the phase transitions are characterized by screening of topological defects. We argue that family of gapped systems obey a version of bulk-boundary correspondence. We show that family of gapped systems in the bulk with the same topological order can rule out family of gapped systems on the boundary with the same topological boundary condition, constraining phase transitions on the boundary.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源