论文标题

分类可解决的原始排列组低等级

Classifying Solvable Primitive Permutation Groups of Low Rank

论文作者

Dolorfino, Mallory, Martin, Luke, Slonim, Zachary, Sun, Yuxuan, Yang, Yong

论文摘要

假设$ g $是一个有限的,及时的,可解决的置换组,该组作用于带有$ n $元素的集合$ s $。令$ g_0 $为ω$中点$α\的稳定器。定义置换组的排名,表示为$ r(g),$是$ s $中$ g_0 $的不同轨道的数量(包括琐碎的轨道$ \ {α\} $)。 Huppert \ cite {huppert}和fulser \ cite {fulser}分别将所有有限的,可解决的,排列的排列组分别分别为第二和第三,而犯规者将四个组限制为一小部分可能性。本文通过明确确认过去的结果并在计算上构建排名$ 4 $的组,从而完成了所有排名的分类小于$ 5 $。

Suppose that $G$ is a finite, transitive, solvable permutation group acting on a set $S$ with $n$ elements. Let $G_0$ be the stabilizer of a point $α\in Ω$. Define the rank of a permutation group, denoted $r(G),$ as the number of distinct orbits of $G_0$ in $S$ (including the trivial orbit $\{α\}$). Huppert \cite{Huppert} and Foulser \cite{Foulser} classified all finite, solvable, permutation groups of rank two and three respectively, and Foulser restricted the rank four groups to a small list of possibilities. This paper completes the classification of all groups of rank less than $5$ by explicitly confirming these past results and computationally constructing the groups of rank $4$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源