论文标题

使用电压控制的磁各向异性和旋转轨道扭矩磁力隧道连接

Random Bitstream Generation using Voltage-Controlled Magnetic Anisotropy and Spin Orbit Torque Magnetic Tunnel Junctions

论文作者

Liu, Samuel, Kwon, Jaesuk, Bessler, Paul W., Cardwell, Suma, Schuman, Catherine, Smith, J. Darby, Aimone, James B., Misra, Shashank, Incorvia, Jean Anne C.

论文摘要

使用随机数生成器(RNG)的概率计算可以利用纳米版的固有随机性来获得系统级别的好处。由于其热驱动的磁化动力学,经常使用自旋传输扭矩(STT)电流幅度来控制MTJ游离层的随机切换,因此在此称为随机写入方法。还有其他旋钮可以控制MTJ-RNG,包括电压控制的磁各向异性(VCMA)和旋转轨道扭矩(SOT),并且需要系统地研究并比较这些方法。我们构建了MTJ的分析模型,以使用VCMA和SOT来表征以生成随机位流的表征。结果表明,这两种方法都会产生高质量的均匀分布的斑点。使用STT电流或施加的磁场偏置侧链,与VCMA和SOT的偏置幅度大致相比,与随机写入相同条件的随机写入相比,VCMA和SOT的偏置幅度均匀。计算出每个样品的能量消耗为0.1 PJ(SOT),1个PJ(随机写)和20个PJ(VCMA),揭示了使用SOT并显示使用VCMA的势能益处可能需要更高的阻尼材料。然后将生成的bitstreams应用于两个示例任务:使用隐藏的相关性Bernoulli硬币方法生成任意概率分布,并使用MTJ-RNGS作为随机神经元作为随机神经元在Boltzmann机器中执行模拟退火,在该机器中,VCMA和SOT方法都可以在其中有效地用小型延迟能量能量能量能量能量,并使小延迟能量有效地最小化。这些结果表明,MTJ作为真正的RNG的灵活性和阐明设计参数,以优化应用程序的设备操作。

Probabilistic computing using random number generators (RNGs) can leverage the inherent stochasticity of nanodevices for system-level benefits. The magnetic tunnel junction (MTJ) has been studied as an RNG due to its thermally-driven magnetization dynamics, often using spin transfer torque (STT) current amplitude to control the random switching of the MTJ free layer magnetization, here called the stochastic write method. There are additional knobs to control the MTJ-RNG, including voltage-controlled magnetic anisotropy (VCMA) and spin orbit torque (SOT), and there is need to systematically study and compared these methods. We build an analytical model of the MTJ to characterize using VCMA and SOT to generate random bit streams. The results show that both methods produce high quality, uniformly distributed bitstreams. Biasing the bitstreams using either STT current or an applied magnetic field shows an approximately sigmoidal distribution vs. bias amplitude for both VCMA and SOT, compared to less sigmoidal for stochastic write for the same conditions. The energy consumption per sample is calculated to be 0.1 pJ (SOT), 1 pJ (stochastic write), and 20 pJ (VCMA), revealing the potential energy benefit of using SOT and showing using VCMA may require higher damping materials. The generated bitstreams are then applied to two example tasks: generating an arbitrary probability distribution using the Hidden Correlation Bernoulli Coins method and using the MTJ-RNGs as stochastic neurons to perform simulated annealing in a Boltzmann machine, where both VCMA and SOT methods show the ability to effectively minimize the system energy with small delay and low energy. These results show the flexibility of the MTJ as a true RNG and elucidate design parameters for optimizing the device operation for applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源