论文标题

带有回忆突触的尖峰神经元网络中的序列学习

Sequence learning in a spiking neuronal network with memristive synapses

论文作者

Bouhadjar, Younes, Siegel, Sebastian, Tetzlaff, Tom, Diesmann, Markus, Waser, Rainer, Wouters, Dirk J.

论文摘要

脑启发的计算提出了一组算法原则,这些原理有望推进人工智能。他们具有自学能力,有效的能源使用和高存储容量。大脑计算核心的核心概念是序列学习和预测。这种计算形式对于我们几乎所有日常任务,例如运动,感知和语言都是必不可少的。了解大脑如何执行这种计算,不仅对于提高神经科学,而且是为新技术脑启发的应用铺平道路的重要性。先前开发的序列预测的尖峰神经网络实施,并通过本地生物学启发的可塑性规则以无监督的方式学习复杂的高阶序列。神经形态硬件是有效运行此类算法的新兴硬件类型,具有有效运行此类算法的希望。它模拟了大脑处理信息的方式,并将神经元直接映射到物理底物中。回忆设备已被确定为神经形态硬件中潜在的突触元素。特别是,氧化还原引起的电阻随机访问记忆(RERAM)设备在许多方面都脱颖而出。它们允许可伸缩性,节能效率快速,并且可以实施生物可塑性规则。在这项工作中,我们研究了在序列学习模型中使用RERAM设备作为替代生物突触的可行性。我们使用神经模拟器巢实施并模拟了包括重新拉兰可塑性的模型。我们研究了不同设备特性对序列学习模型的性能特征的影响,并证明了相对于不同的启用比率,电导分辨率,设备可变性和突触故障的弹性。

Brain-inspired computing proposes a set of algorithmic principles that hold promise for advancing artificial intelligence. They endow systems with self learning capabilities, efficient energy usage, and high storage capacity. A core concept that lies at the heart of brain computation is sequence learning and prediction. This form of computation is essential for almost all our daily tasks such as movement generation, perception, and language. Understanding how the brain performs such a computation is not only important to advance neuroscience but also to pave the way to new technological brain-inspired applications. A previously developed spiking neural network implementation of sequence prediction and recall learns complex, high-order sequences in an unsupervised manner by local, biologically inspired plasticity rules. An emerging type of hardware that holds promise for efficiently running this type of algorithm is neuromorphic hardware. It emulates the way the brain processes information and maps neurons and synapses directly into a physical substrate. Memristive devices have been identified as potential synaptic elements in neuromorphic hardware. In particular, redox-induced resistive random access memories (ReRAM) devices stand out at many aspects. They permit scalability, are energy efficient and fast, and can implement biological plasticity rules. In this work, we study the feasibility of using ReRAM devices as a replacement of the biological synapses in the sequence learning model. We implement and simulate the model including the ReRAM plasticity using the neural simulator NEST. We investigate the effect of different device properties on the performance characteristics of the sequence learning model, and demonstrate resilience with respect to different on-off ratios, conductance resolutions, device variability, and synaptic failure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源