论文标题
我将生存:使用衰减时间的在线符合算法检查算法
I Will Survive: An Online Conformance Checking Algorithm Using Decay Time
论文作者
论文摘要
组织中的流程执行会生成各种数据。流程挖掘是一种数据驱动的分析方法,可从业务过程的角度分析这些数据。在线一致性检查与在数据流上发现现实生活和建模过程行为之间的差异的交易。在线符合度检查的当前最新输出是一个前缀对齐,用于查明在痕迹和模型方面确定确切的偏差,同时在流媒体设置中容纳跟踪的未知终止。但是,产生前缀对齐需要一个状态空间搜索,以找到从痕迹和模型之间的最短路径到痕迹和模型之间的共同端状态。这在计算上很昂贵,并且使该方法在在线环境中不可行。以前,TRIE数据结构已被证明可以有效地构建对齐,并利用代理日志以有限的方式代表过程模型。本文在Trie上引入了一种新的大概算法(IWS),以进行在线合格检查。该算法被证明是快速,记忆效率的,并且能够同时输出前缀和一个完整的对齐事件,同时跟踪先前看到的情况及其状态。与当前最新算法进行的比较分析,用于查找前缀对齐的算法表明,在某些情况下,IWS算法达到了更快的执行时间,而错误成本较小。在极端情况下,IWS发现前缀对齐比当前的现状快三个数量级。 IWS算法包括一个折扣衰减时间设置,以进行有效的内存使用和改善计算时间的外观限制。最后,使用高流量事件流的模拟对算法进行了应力测试。
Process executions in organizations generate a large variety of data. Process mining is a data-driven analytical approach for analyzing this data from a business process point of view. Online conformance checking deals with finding discrepancies between real-life and modeled process behavior on data streams. The current state-of-the-art output of online conformance checking is a prefix-alignment, which is used for pinpointing the exact deviations in terms of the trace and the model while accommodating a trace's unknown termination in a streaming setting. However, producing prefix-alignments entails a state space search to find the shortest path from a common start state to a common end state between the trace and the model. This is computationally expensive and makes the method infeasible in an online setting. Previously, the trie data structure has been shown to be efficient for constructing alignments, utilizing a proxy log representing the process model in a finite way. This paper introduces a new approximate algorithm (IWS) on top of the trie for online conformance checking. The algorithm is shown to be fast, memory-efficient, and able to output both a prefix and a complete alignment event-by-event while keeping track of previously seen cases and their state. Comparative analysis against the current state-of-the-art algorithm for finding prefix-alignments shows that the IWS algorithm achieves, in some cases, an order of magnitude faster execution time while having a smaller error cost. In extreme cases, the IWS finds prefix-alignments roughly three orders of magnitude faster than the current state of the art. The IWS algorithm includes a discounted decay time setting for efficient memory usage and a look-ahead limit for improving computation time. Finally, the algorithm is stress tested for performance using a simulation of high-traffic event streams.