论文标题

内陆表面风的卷积神经网络超分辨率的统计处理,用于亚网格尺度可变性定量

Statistical treatment of convolutional neural network super-resolution of inland surface wind for subgrid-scale variability quantification

论文作者

Getter, Daniel, Bessac, Julie, Rudi, Johann, Feng, Yan

论文摘要

机器学习模型已被用来执行气候数据的无物理数据驱动或混合动力学降低。这些实现大多数在相对较小的降压因素上运行,因为从粗数据中恢复了精细信息的挑战。这将它们与许多全球气候模型输出的兼容性限制在$ 50--100公里的$ 50--100公里之间可用,以限于云解决或城市规模等感兴趣的尺度。这项研究系统地研究了卷积神经网络(CNN)的能力,从不同的粗分辨率(25 km,48 km和100 km的分辨率)到3 km,从陆地表面降低了地表风速数据。对于每个降尺度因子,我们考虑三种CNN配置,它们产生了高尺度风速的超级分辨预测,这些预测在1到3个输入字段之间:粗风速,细尺度地形和昼夜循环。除了高规模的风速外,还生成了概率密度函数参数,可以通过该速度来产生样品速度,以说明风速的固有随机性。为了进行概括性评估,对CNN模型进行了在训练过程中看不见的不同地形和气候的区域进行测试。对超级分辨预测的评估集中在亚网格规模的变异性和极端的恢复上。与其他模型配置相比,具有粗大风和精细地形的模型表现出最佳性能,这些模型配置在相同的降压因子上运行。与其他输入配置相比,我们的昼夜循环编码会导致样本外推广性较低。

Machine learning models have been employed to perform either physics-free data-driven or hybrid dynamical downscaling of climate data. Most of these implementations operate over relatively small downscaling factors because of the challenge of recovering fine-scale information from coarse data. This limits their compatibility with many global climate model outputs, often available between $\sim$50--100 km resolution, to scales of interest such as cloud resolving or urban scales. This study systematically examines the capability of convolutional neural networks (CNNs) to downscale surface wind speed data over land surface from different coarse resolutions (25 km, 48 km, and 100 km resolution) to 3 km. For each downscaling factor, we consider three CNN configurations that generate super-resolved predictions of fine-scale wind speed, which take between 1 to 3 input fields: coarse wind speed, fine-scale topography, and diurnal cycle. In addition to fine-scale wind speeds, probability density function parameters are generated, through which sample wind speeds can be generated accounting for the intrinsic stochasticity of wind speed. For generalizability assessment, CNN models are tested on regions with different topography and climate that are unseen during training. The evaluation of super-resolved predictions focuses on subgrid-scale variability and the recovery of extremes. Models with coarse wind and fine topography as inputs exhibit the best performance compared with other model configurations, operating across the same downscaling factor. Our diurnal cycle encoding results in lower out-of-sample generalizability compared with other input configurations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源