论文标题

在不确定性下连续控制安全至关重要多代理系统的二次编程

Quadratic Programming for Continuous Control of Safety-Critical Multi-Agent Systems Under Uncertainty

论文作者

Wu, Si, Liu, Tengfei, Egerstedt, Magnus, Jiang, Zhong-Ping

论文摘要

本文研究了基于二次编程(QP)的安全至关重要多代理系统的控制问题。每个受控代理都被建模为集成器和不确定的非线性驱动系统的级联连接。特别是,集成器表示位置 - 速度关系,而致动系统描述了实际速度对速度参考信号的动态响应。输入到输出稳定性(iOS)的概念用于表征驱动系统的基本速度跟踪能力。 The uncertain actuation dynamics may cause infeasibility or discontinuous solutions of QP algorithms for collision avoidance.同样,受控积分器与不确定的驱动动力学之间的相互作用可能导致重大鲁棒性问题。通过使用非线性控制方法和数值优化方法,本文首先贡献了一种新的可行设定重塑技术和精制的QP算法,以实现可行性,鲁棒性和本地Lipschitz的连续性。然后,我们提出非线性小增益分析,以处理固有的相互作用,以确保闭环多代理系统的安全性。通过数值模拟和物理实验来说明所提出的方法。

This paper studies the control problem for safety-critical multi-agent systems based on quadratic programming (QP). Each controlled agent is modeled as a cascade connection of an integrator and an uncertain nonlinear actuation system. In particular, the integrator represents the position-velocity relation, and the actuation system describes the dynamic response of the actual velocity to the velocity reference signal. The notion of input-to-output stability (IOS) is employed to characterize the essential velocity-tracking capability of the actuation system. The uncertain actuation dynamics may cause infeasibility or discontinuous solutions of QP algorithms for collision avoidance. Also, the interaction between the controlled integrator and the uncertain actuation dynamics may lead to significant robustness issues. By using nonlinear control methods and numerical optimization methods, this paper first contributes a new feasible-set reshaping technique and a refined QP algorithm for feasibility, robustness, and local Lipschitz continuity. Then, we present a nonlinear small-gain analysis to handle the inherent interaction for guaranteed safety of the closed-loop multi-agent system. The proposed methods are illustrated by numerical simulations and a physical experiment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源