论文标题

基于得分的连续时间离散扩散模型

Score-based Continuous-time Discrete Diffusion Models

论文作者

Sun, Haoran, Yu, Lijun, Dai, Bo, Schuurmans, Dale, Dai, Hanjun

论文摘要

通过随机微分方程(SDE)基于得分的建模为扩散模型提供了新的视角,并在连续数据上表现出了出色的性能。但是,对于离散空间,未正确定义了对数可能性函数的梯度,即得分函数。这使得适应\ textColor {\ cdiff} {基于得分的建模}对分类数据是不平凡的。在本文中,我们通过引入随机跳跃过程将扩散模型扩散到离散变量,其中反向过程通过连续的Markov链进行了DENO。该公式在向后采样期间接受了分析模拟。为了了解反向过程,我们将分数匹配扩展到一般的分类数据,并表明可以通过简单匹配条件边缘分布来获得公正的估计器。我们证明了所提出的方法在一组合成和现实世界的音乐和图像基准中的有效性。

Score-based modeling through stochastic differential equations (SDEs) has provided a new perspective on diffusion models, and demonstrated superior performance on continuous data. However, the gradient of the log-likelihood function, i.e., the score function, is not properly defined for discrete spaces. This makes it non-trivial to adapt \textcolor{\cdiff}{the score-based modeling} to categorical data. In this paper, we extend diffusion models to discrete variables by introducing a stochastic jump process where the reverse process denoises via a continuous-time Markov chain. This formulation admits an analytical simulation during backward sampling. To learn the reverse process, we extend score matching to general categorical data and show that an unbiased estimator can be obtained via simple matching of the conditional marginal distributions. We demonstrate the effectiveness of the proposed method on a set of synthetic and real-world music and image benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源