论文标题

挑战有丝分裂检测算法:全球标签允许质心定位

Challenging mitosis detection algorithms: Global labels allow centroid localization

论文作者

Fernandez-Martín, Claudio, Kiraz, Umay, Silva-Rodríguez, Julio, Morales, Sandra, Janssen, Emiel, Naranjo, Valery

论文摘要

有丝分裂活性是对不同类型癌症的诊断和预后的关键增殖生物标志物。然而,由于大尺寸的活检载玻片,有丝分裂细胞的低密度和模式异质性,有丝分裂计数是病理学家的繁琐过程,容易发生可重复性。为了提高可重复性,在过去几年中,使用卷积神经网络提出了深度学习方法。但是,这些方法受到数据标记过程的阻碍,这些过程通常仅由有丝分裂的质心组成。因此,当前的文献提出了具有多个阶段的复杂算法,以在像素级别上完善标签,并减少假阳性的数量。在这项工作中,我们建议避免使用复杂的方案,并以弱监督的方式执行本地化任务,仅使用图像级标签。在公开可用的TUPAC16数据集上获得的结果与最先进的方法具有竞争力,仅使用一个训练阶段。我们的方法达到了0.729的F1得分,并挑战了先前方法的效率,该方法需要多个阶段和强有丝分裂的位置信息。

Mitotic activity is a crucial proliferation biomarker for the diagnosis and prognosis of different types of cancers. Nevertheless, mitosis counting is a cumbersome process for pathologists, prone to low reproducibility, due to the large size of augmented biopsy slides, the low density of mitotic cells, and pattern heterogeneity. To improve reproducibility, deep learning methods have been proposed in the last years using convolutional neural networks. However, these methods have been hindered by the process of data labelling, which usually solely consist of the mitosis centroids. Therefore, current literature proposes complex algorithms with multiple stages to refine the labels at pixel level, and to reduce the number of false positives. In this work, we propose to avoid complex scenarios, and we perform the localization task in a weakly supervised manner, using only image-level labels on patches. The results obtained on the publicly available TUPAC16 dataset are competitive with state-of-the-art methods, using only one training phase. Our method achieves an F1-score of 0.729 and challenges the efficiency of previous methods, which required multiple stages and strong mitosis location information.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源