论文标题
稳健,快速准确地映射扩散平均峰度
Robust, fast and accurate mapping of diffusional mean kurtosis
论文作者
论文摘要
扩散的峰度成像(DKI)是一种测量生物组织中非高斯扩散程度的方法,该方法在临床诊断,治疗计划和监测许多神经系统疾病和疾病方面表现出了很大的希望。但是,从临床上可行的数据获取中对峰度的稳健,快速准确估计仍然是一个挑战。在这项研究中,我们首先概述了通过亚扩散数学框架估算平均峰度的新的准确方法。至关重要的是,常规DKI的这种扩展克服了对后者最大B值的限制。现在可以简单地将峰度和扩散率作为亚扩散模型参数的功能进行计算。其次,我们提出了一种新的快速且可靠的拟合程序,以使用两个扩散时间来估算亚散射模型参数,而无需增加获取时间,而不是传统的DKI。第三,使用模拟和Connectome 1.0人脑数据评估了我们基于子扩散的峰度映射方法。即使在仅在几分钟内收集扩散编码的数据时,也可以实现精美的组织对比度。总而言之,我们的发现表明,在临床上可行的扩散加权磁共振成像数据采集时间内,可以实现鲁棒,快速准确的平均峰度估计。
Diffusional kurtosis imaging (DKI) is a methodology for measuring the extent of non-Gaussian diffusion in biological tissue, which has shown great promise in clinical diagnosis, treatment planning and monitoring of many neurological diseases and disorders. However, robust, fast and accurate estimation of kurtosis from clinically feasible data acquisitions remains a challenge. In this study, we first outline a new accurate approach of estimating mean kurtosis via the sub-diffusion mathematical framework. Crucially, this extension of the conventional DKI overcomes the limitation on the maximum b-value of the latter. Kurtosis and diffusivity can now be simply computed as functions of the sub-diffusion model parameters. Second, we propose a new fast and robust fitting procedure to estimate the sub-diffusion model parameters using two diffusion times without increasing acquisition time as for the conventional DKI. Third, our sub-diffusion based kurtosis mapping method is evaluated using both simulations and the Connectome 1.0 human brain data. Exquisite tissue contrast is achieved even when the diffusion encoded data is collected in only minutes. In summary, our findings suggest robust, fast and accurate estimation of mean kurtosis can be realised within a clinically feasible diffusion weighted magnetic resonance imaging data acquisition time.