论文标题

旋转球形对流的纬度区域化

Latitudinal regionalization of rotating spherical shell convection

论文作者

Gastine, T., Aurnou, J. M.

论文摘要

对流在旋转地球物理和天体物理体上无处不在。先前的球形壳研究表明,极性区域的对流动力学与较低纬度的赤道动力学有显着差异。然而,大多数球形壳对流缩放定律使用全球平均数量,以消除物理学的纬度差异。在这里,我们通过分析球形壳模拟的区域化对流传热特性来量化这些纬度差异。这是通过在两个特定的latitudinition分离的部分,极性和赤道区域分别测量本地努塞尔的数字,分别分别为$ nu_p $和$ nu_e $。在旋转的球形壳中,对流在切线缸外部首次集合,使赤道传热在小和中等的超临界性下主导。我们表明,由Rayleigh Number $ ra $参数化的浮力强迫必须超过关键的赤道强迫,以$ \ \ 20 $的倍数,以触发切线缸内的极性对流。一旦触发,$ nu_p $以$ ra $的速度增加了$ nu_e $的速度。然后,赤道和极性热通量在足够高的$ ra $下往往会变得可比。极性对流数据与笛卡尔数值模拟之间的比较揭示了两个几何形状在传热和平均体温梯度方面的定量一致性。该协议表明,通过球形模拟以及通过降低的研究途径,无论是理论,数值还是实验性,都可以访问球形壳旋转对流动力学。

Convection occurs ubiquitously on and in rotating geophysical and astrophysical bodies. Prior spherical shell studies have shown that the convection dynamics in polar regions can differ significantly from the lower latitude, equatorial dynamics. Yet most spherical shell convective scaling laws use globally-averaged quantities that erase latitudinal differences in the physics. Here we quantify those latitudinal differences by analyzing spherical shell simulations in terms of their regionalized convective heat transfer properties. This is done by measuring local Nusselt numbers in two specific, latitudinally separate, portions of the shell, the polar and the equatorial regions, $Nu_p$ and $Nu_e$, respectively. In rotating spherical shells, convection first sets in outside the tangent cylinder such that equatorial heat transfer dominates at small and moderate supercriticalities. We show that the buoyancy forcing, parameterized by the Rayleigh number $Ra$, must exceed the critical equatorial forcing by a factor of $\approx 20$ to trigger polar convection within the tangent cylinder. Once triggered, $Nu_p$ increases with $Ra$ much faster than does $Nu_e$. The equatorial and polar heat fluxes then tend to become comparable at sufficiently high $Ra$. Comparisons between the polar convection data and Cartesian numerical simulations reveal quantitative agreement between the two geometries in terms of heat transfer and averaged bulk temperature gradient. This agreement indicates that spherical shell rotating convection dynamics are accessible both through spherical simulations and via reduced investigatory pathways, be they theoretical, numerical or experimental.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源