论文标题
积极确定的矩阵值值核及其标量值预测:反例
Positive definite matrix-valued kernels and their scalar valued projections: counterexamples
论文作者
论文摘要
在本文中,我们表明,圆圈中严格的积极矩阵有价值的各向同性核,而欧几里得空间中的真实点产物内核在其标量值的投影方面表现不佳。我们通过使用单位不变内核和相邻不变的内核的概念将获得的反例概括为抽象设置,提供了一个上的不变函数。
In this paper we show that the strictly positive definite matrix valued isotropic kernels in the circle and the real dot product kernels in Euclidean spaces are not well behaved with respect to its scalar valued projections. We generalize the counterexamples that we obtained to an abstract setting by using the concepts of unitarily invariant kernels and adjointly invariant kernels, provided the existence of an aperiodic invariant function.