论文标题

使用深Q-NETWORK的翼型形状优化

Airfoil Shape Optimization using Deep Q-Network

论文作者

Rout, Siddharth, Lin, Chao-An

论文摘要

探索了将增强学习用于机翼形状优化的可行性。深Q网络(DQN)用于马尔可夫的决策过程,以通过学习最初形状的最佳变化来实现所需目标,以找到最佳形状。使用Bezier控制点生成机翼轮廓,以减少控制变量的数量。控制点位置的变化仅限于弦线正常的方向,以降低优化的复杂性。该过程被设计为搜索对配置文件的每个控制点更改的情节。 DQN实质上通过更新Bellman最优方程的时间差异来了解最佳变化的情节。阻力和升力系数是根据使用Xfoil电位流求解器计算出的曲线的压力系数的分布来计算的。这些系数用于在学习过程中为每一个变化提供奖励,在学习过程中,最终目标将最大程度地提高情节的累积奖励。

The feasibility of using reinforcement learning for airfoil shape optimization is explored. Deep Q-Network (DQN) is used over Markov's decision process to find the optimal shape by learning the best changes to the initial shape for achieving the required goal. The airfoil profile is generated using Bezier control points to reduce the number of control variables. The changes in the position of control points are restricted to the direction normal to the chordline so as to reduce the complexity of optimization. The process is designed as a search for an episode of change done to each control point of a profile. The DQN essentially learns the episode of best changes by updating the temporal difference of the Bellman Optimality Equation. The drag and lift coefficients are calculated from the distribution of pressure coefficient along the profile computed using XFoil potential flow solver. These coefficients are used to give a reward to every change during the learning process where the ultimate aim stands to maximize the cumulate reward of an episode.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源