论文标题
与Ricci Horizon临界值对Tsallis全息暗能的观察性约束
Observational constraints on Tsallis holographic dark energy with Ricci horizon cutoff
论文作者
论文摘要
在这项研究中,我们有兴趣通过使用三个观察性数据集来限制与RICCI Horizon截止的非线性相互作用和非相互作用的Tsallis全息暗能量(THDE)。为此,考虑到非相互作用和非线性相互作用项的THDE将由SNE IA,SNE IA+H(Z)和SNE IA+H(Z)+GRB样品进行调查,以调查Hubble($ H(Z)$),状态($ H(Z)$),状态的暗能量方程($ω_} $ a {de de} $ {$),减速($ q $)参数。调查$ h(z)$参数说明我们的模型在观察方面非常一致。此外,它可以揭示与RICCI截止时期的非互动和非线性相互作用的转折点。接下来,对于我们的模型,对$ω_{de} $的分析显示,黑暗能量可以在当前体验幻影状态。然而,它在早期的典型政权中,接近了晚期时代的宇宙常数。对于$ω_{eff} $参数的类似结果,$ω_{eff} $将在当前红移处体验典型区域。在上述参数旁边,对$ q $参数的研究表明,该模型满足了从物质到以黑暗能源为主时代的可接受过渡阶段。之后,将对我们的模型分析经典稳定性($ v_ {s}^{2} $)。 $ v_ {s}^{2} $表明,与RICCI截止的非相互作用和非线性交互作用在过去的时代将是稳定的,现在不稳定,而渐进的时代则是稳定的。然后,我们将使用$ jerk $($ j $)和$ om $参数来区分我们的型号和$λcdm$型号。最后,我们将计算THDE和非线性与RICCI相互作用的宇宙年龄。
In this research, we are interested in constraining the nonlinear interacting and noninteracting Tsallis holographic dark energy (THDE) with Ricci horizon cutoff by employing three observational datasets. To this aim, the THDE with Ricci horizon considering the noninteraction and nonlinear interaction terms will be fitted by the SNe Ia, SNe Ia+H(z), and SNe Ia+H(z)+GRB samples to investigate the Hubble ($H(z)$), dark energy equation of state ($ω_{DE}$), effective equation of state ($ω_{eff}$), and deceleration ($q$) parameters. Investigating the $H(z)$ parameter illustrates that our models are in good consistent with respect to observation. Also, it can reveal the turning point for both noninteracting and nonlinear interacting THDE with Ricci cutoff in the late time era. Next, the analysis of the $ω_{DE}$ for our models displays that the dark energy can experience the phantom state at the current time. However, it lies in the quintessence regime in the early era and approaches the cosmological constant in the late-time epoch. Similar results will be for the $ω_{eff}$ parameter with this difference that the $ω_{eff}$ will experience the quintessence region at the current redshift. Next to the mentioned parameters, the study of the $q$ parameter indicates that the models satisfy an acceptable transition phase from the matter to the dark energy-dominated era. After that, the classical stability ($v_{s}^{2}$) will be analyzed for our models. The $v_{s}^{2}$ shows that the noninteracting and nonlinear interacting THDE with Ricci cutoff will be stable in the past era, unstable in the present, and progressive epochs. Then, we will employ the $Jerk$ ($J$) and $OM$ parameters to distinguish between our models and the $ΛCDM$ model. Finally, we will calculate the age of the Universe for the THDE and nonlinear interacting THDE with Ricci as the IR cutoff.