论文标题
使用密度估计的柔性预先培训和隐性可能性的强力重力透镜参数的准确后代的框架
A Framework for Obtaining Accurate Posteriors of Strong Gravitational Lensing Parameters with Flexible Priors and Implicit Likelihoods using Density Estimation
论文作者
论文摘要
我们报告了隐式可能性推断对具有神经网络的强镜系统的宏观参数预测的应用。这使我们能够对明确定义的贝叶斯统计框架内的镜头系统进行深度学习分析,以明确对镜头变量施加了所需的先验,以获得准确的后代,并确保在完美性能极限的最佳后层。我们训练神经网络执行回归任务,以产生镜头参数的点估计。然后,我们将这些估计值解释为推理设置中的压缩统计,并使用混合密度网络对其可能性函数进行建模。我们将结果与近似贝叶斯神经网络的结果进行比较,讨论其意义,并指向未来的方向。基于测试集的100,000个强镜模拟,我们的摊销模型可为任何任意置信区间产生准确的后代,最大百分比偏差为$ 1.4 \%\%\%$ $ $ $ 21.8 \%$ $置信度,而无需任何添加的校准程序。总体而言,推断100,000个不同的后代需要一天的GPU,这表明该方法可以很好地扩展到即将进行的Sky Surveys发现的数千个镜头。
We report the application of implicit likelihood inference to the prediction of the macro-parameters of strong lensing systems with neural networks. This allows us to perform deep learning analysis of lensing systems within a well-defined Bayesian statistical framework to explicitly impose desired priors on lensing variables, to obtain accurate posteriors, and to guarantee convergence to the optimal posterior in the limit of perfect performance. We train neural networks to perform a regression task to produce point estimates of lensing parameters. We then interpret these estimates as compressed statistics in our inference setup and model their likelihood function using mixture density networks. We compare our results with those of approximate Bayesian neural networks, discuss their significance, and point to future directions. Based on a test set of 100,000 strong lensing simulations, our amortized model produces accurate posteriors for any arbitrary confidence interval, with a maximum percentage deviation of $1.4\%$ at $21.8\%$ confidence level, without the need for any added calibration procedure. In total, inferring 100,000 different posteriors takes a day on a single GPU, showing that the method scales well to the thousands of lenses expected to be discovered by upcoming sky surveys.