论文标题

多维数据恢复的低量张量函数表示

Low-Rank Tensor Function Representation for Multi-Dimensional Data Recovery

论文作者

Luo, Yisi, Zhao, Xile, Li, Zhemin, Ng, Michael K., Meng, Deyu

论文摘要

由于高阶张量自然适合表示现实世界中的多维数据,例如颜色图像和视频,因此低级张量表示已成为机器学习和计算机视觉的新兴领域之一。但是,经典的低量张量表示形式只能代表有限网格的数据,因为它们的本质离散性质会阻碍其潜在的适用性,而在Meshgrid之外的许多情况下。为了打破此障碍,我们提出了一个低级张量函数表示(LRTFR),该函数可以连续地代表以无限分辨率超越网格的数据。具体而言,建议的张量函数将任意坐标映射到相应的值,可以在无限的真实空间中连续表示数据。与离散张量平行,我们为张量函数开发了两个基本概念,即张量函数等级和低秩量函数分解。从理论上讲,我们合理地证明,在LRTFR中,低级别和平滑的正规化都是和谐地统一的,这导致了数据连续表示的高效和效率。与最新方法相比,由图像处理(图像插入和降解),机器学习(高参数优化)和计算机图形(点云上采样)引起的广泛的多维数据恢复应用证明了我们方法的优势和多功能性与最先进的方法相比。尤其是,超出原始网格分辨率(超参数优化)甚至超越Meshgrid(Point Cloud Upsmpling)的实验验证了我们方法的有利性能以进行连续表示。

Since higher-order tensors are naturally suitable for representing multi-dimensional data in real-world, e.g., color images and videos, low-rank tensor representation has become one of the emerging areas in machine learning and computer vision. However, classical low-rank tensor representations can only represent data on finite meshgrid due to their intrinsical discrete nature, which hinders their potential applicability in many scenarios beyond meshgrid. To break this barrier, we propose a low-rank tensor function representation (LRTFR), which can continuously represent data beyond meshgrid with infinite resolution. Specifically, the suggested tensor function, which maps an arbitrary coordinate to the corresponding value, can continuously represent data in an infinite real space. Parallel to discrete tensors, we develop two fundamental concepts for tensor functions, i.e., the tensor function rank and low-rank tensor function factorization. We theoretically justify that both low-rank and smooth regularizations are harmoniously unified in the LRTFR, which leads to high effectiveness and efficiency for data continuous representation. Extensive multi-dimensional data recovery applications arising from image processing (image inpainting and denoising), machine learning (hyperparameter optimization), and computer graphics (point cloud upsampling) substantiate the superiority and versatility of our method as compared with state-of-the-art methods. Especially, the experiments beyond the original meshgrid resolution (hyperparameter optimization) or even beyond meshgrid (point cloud upsampling) validate the favorable performances of our method for continuous representation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源