论文标题
IR掺杂的MNPTSN Heusler系统中异常霍尔效应的内在机制的外在机制
Extrinsic to intrinsic mechanism crossover of anomalous Hall effect in the Ir-doped MnPtSn Heusler system
论文作者
论文摘要
在非铁磁性和非富特磁性材料中,大型异常霍尔信号的最新发现表明,系统的磁化不是实现异常霍尔效应(AHE)的关键组成部分。在这里,我们提出了一项合并的理论和实验研究,该研究证明了Cubic Heusler System MNPT $ _ {1-X} $ ir $ _x $ sn中AHE不同机制的演变。借助磁化和中子衍射研究,我们表明,非磁IR代替PT的取代可显着降低净磁矩从4.17 $μ_b$/f.u。在mnptsn至2.78 $μ_b$/f.u中。对于MNPT $ _ {0.5} $ ir $ _ {0.5} $ sn。相比之下,异常的大厅电阻率将近三倍,从1.6 $μΩ$ cm in MNPTSN增加到MNPT $ _ {0.5} $ ir $ $ $ _ {0.5} $ sn的大约5 $μΩ$ cm。大厅电阻率数据的功率法分析表明,在母体MNPTSN的情况下,AHE的外部贡献几乎消失了MNPT $ _ {0.5} $ ir $ $ $ $ _ {0.5} $ sn,其中本质机制起着主要作用。我们的理论研究很好地支持了实验结果,该研究表明,当将IR引入系统中时,自旋轨道耦合的大量增强。我们发现,与化学工程的跨界效应的跨界效果是最近有助于控制拓扑材料的拓扑材料的拓扑拓扑,无论是散装材料还是薄膜形式。
Recent findings of large anomalous Hall signal in nonferromagnetic and nonferrimagnetic materials suggest that the magnetization of the system is not a critical component for the realization of the anomalous Hall effect (AHE). Here, we present a combined theoretical and experimental study demonstrating the evolution of different mechanisms of AHE in a cubic Heusler system MnPt$_{1-x}$Ir$_x$Sn. With the help of magnetization and neutron diffraction studies, we show that the substitution of nonmagnetic Ir in place of Pt significantly reduces the net magnetic moment from 4.17 $ μ_B$/f.u. in MnPtSn to 2.78 $ μ_B$/f.u. for MnPt$_{0.5}$Ir$_{0.5}$Sn. In contrast, the anomalous Hall resistivity is enhanced by nearly three times from 1.6 $ μΩ$ cm in MnPtSn to about 5 $ μΩ$ cm for MnPt$_{0.5}$Ir$_{0.5}$Sn. The power law analysis of the Hall resistivity data suggests that the extrinsic contribution of AHE that dominates in the case of the parent MnPtSn almost vanishes for MnPt$_{0.5}$Ir$_{0.5}$Sn, where the intrinsic mechanism plays the major role. The experimental results are well supported by our theoretical study, which shows a considerable enhancement of the spin-orbit coupling when Ir is introduced into the system. Our finding of a crossover of the anomalous Hall effect with chemical engineering is a major contribution toward the recent interest in controlling the band topology of topological materials, both in bulk and thin-film forms.