论文标题
公正的异质场景图生成具有关系感知消息传递神经网络
Unbiased Heterogeneous Scene Graph Generation with Relation-aware Message Passing Neural Network
论文作者
论文摘要
最近的场景图(SGG)框架的重点是学习图像中多个对象之间的复杂关系。由于消息传递神经网络(MPNN)的性质,该消息对象与其相邻对象之间的高阶相互作用建模,它们是SGG的主要表示模块。但是,现有的基于MPNN的框架将场景图作为均匀的图形,这限制了对象之间的视觉关系的上下文意识。也就是说,他们忽略了一个事实,即关系倾向于高度依赖与关系相关的对象。在本文中,我们提出了一个公正的异质场景图生成(HETSGG)框架,该框架使用消息传递神经网络捕获关系感知的上下文。我们设计了一个新颖的消息传递层,称为关系感知消息传递神经网络(RMP),该消息汇总了图像的上下文信息考虑对象之间的谓词类型。我们广泛的评估表明,Hetsgg优于最先进的方法,尤其是在尾巴谓词类别上的表现优于。
Recent scene graph generation (SGG) frameworks have focused on learning complex relationships among multiple objects in an image. Thanks to the nature of the message passing neural network (MPNN) that models high-order interactions between objects and their neighboring objects, they are dominant representation learning modules for SGG. However, existing MPNN-based frameworks assume the scene graph as a homogeneous graph, which restricts the context-awareness of visual relations between objects. That is, they overlook the fact that the relations tend to be highly dependent on the objects with which the relations are associated. In this paper, we propose an unbiased heterogeneous scene graph generation (HetSGG) framework that captures relation-aware context using message passing neural networks. We devise a novel message passing layer, called relation-aware message passing neural network (RMP), that aggregates the contextual information of an image considering the predicate type between objects. Our extensive evaluations demonstrate that HetSGG outperforms state-of-the-art methods, especially outperforming on tail predicate classes.