论文标题
基于量子步行的状态转移算法在完整的M-Partite图上
Quantum walk based state transfer algorithms on the complete M-partite graph
论文作者
论文摘要
我们调查了创建的量子步行搜索和状态转移算法,重点是每个分区中的$ n $ vertices的完整$ m $明确图。首先,可以表明,通过向每个顶点添加一个循环,搜索算法可以在大图的极限中找到具有单位概率的标记顶点。接下来,我们使用两个标记的顶点采用搜索的进化操作员来执行发件人和接收器之间的状态转移。我们表明,当发件人和接收器处于不同的分区中时,算法会成功,而Fidelity接近大图的Unity。但是,当发件人和接收器处于同一分区时,保真度并不完全达到一个。为了修改这个问题,我们提出了一种具有主动开关的状态转移算法,该算法仅基于单个顶点搜索就可以估算其保真度。
We investigate coined quantum walk search and state transfer algorithms, focusing on the complete $M$-partite graph with $N$ vertices in each partition. First, it is shown that by adding a loop to each vertex the search algorithm finds the marked vertex with unit probability in the limit of a large graph. Next, we employ the evolution operator of the search with two marked vertices to perform a state transfer between the sender and the receiver. We show that when the sender and the receiver are in different partitions the algorithm succeeds with fidelity approaching unity for a large graph. However, when the sender and the receiver are in the same partition the fidelity does not reach exactly one. To amend this problem we propose a state transfer algorithm with an active switch, whose fidelity can be estimated based on the single vertex search alone.