论文标题
在多标签文本分类中有效部署对比度学习
An Effective Deployment of Contrastive Learning in Multi-label Text Classification
论文作者
论文摘要
对比度学习技术在自然语言处理任务中的有效性尚待探索和分析。如何正确,合理地正确构建正面和负面样本是对比度学习的核心挑战。在多标签文本分类任务中发现对比对象甚至更难。以前提出的对比损失很少。在本文中,我们通过提出五个新型对比损失的多标签文本分类任务来研究问题。这些是严格的对比损失(SCL),标签内对比度损失(ICL),JACCARD相似性对比损失(JSCL),JACCARD相似性概率对比损失(JSPCL)和逐步标记对比度损失(SLCL)。我们通过使用这些新颖的损失来探索对比度学习对多标签文本分类任务的有效性,并为在特定任务上部署对比度学习技术提供了一组基线模型。我们进一步对我们的方法进行了可解释的分析,以表明对比的学习损失的不同组成部分如何发挥其作用。实验结果表明,我们提出的对比损失可以改善多标签文本分类任务。我们的工作还探讨了如何针对多标签文本分类任务进行对比学习。
The effectiveness of contrastive learning technology in natural language processing tasks is yet to be explored and analyzed. How to construct positive and negative samples correctly and reasonably is the core challenge of contrastive learning. It is even harder to discover contrastive objects in multi-label text classification tasks. There are very few contrastive losses proposed previously. In this paper, we investigate the problem from a different angle by proposing five novel contrastive losses for multi-label text classification tasks. These are Strict Contrastive Loss (SCL), Intra-label Contrastive Loss (ICL), Jaccard Similarity Contrastive Loss (JSCL), Jaccard Similarity Probability Contrastive Loss (JSPCL), and Stepwise Label Contrastive Loss (SLCL). We explore the effectiveness of contrastive learning for multi-label text classification tasks by the employment of these novel losses and provide a set of baseline models for deploying contrastive learning techniques on specific tasks. We further perform an interpretable analysis of our approach to show how different components of contrastive learning losses play their roles. The experimental results show that our proposed contrastive losses can bring improvement to multi-label text classification tasks. Our work also explores how contrastive learning should be adapted for multi-label text classification tasks.