论文标题

使用机器学习的量子电路保真度估算

Quantum circuit fidelity estimation using machine learning

论文作者

Vadali, Avi, Kshirsagar, Rutuja, Shyamsundar, Prasanth, Perdue, Gabriel N.

论文摘要

实际量子计算机的计算能力受错误的限制。当使用量子计算机执行无法经过经典的有效模拟的算法时,量化进行计算的准确性很重要。在这项工作中,我们介绍了一种基于机器学习的技术,以估计由嘈杂的量子电路和与理想无噪声计算相对应的目标状态产生的状态之间的保真度。我们的机器学习模型是以监督方式训练的,使用较小或更简单的电路,可以使用其他技术来估算富达,例如直接保真度估计和量子状态层析成像。我们证明,对于具有逼真的噪声模型的模拟随机量子电路,训练有素的模型可以预测此类方法是不可行的更复杂电路的保真度。特别是,我们显示训练有素的模型可以对纠缠程度高的电路进行预测,而训练集中的电路也可以预测,即使训练组仅包括克利福德还原电路,该模型也可能对非克利福德电路进行预测。这种经验证明表明,经典的机器学习可能有助于对某些非平凡问题的超过古典量子电路进行预测。

The computational power of real-world quantum computers is limited by errors. When using quantum computers to perform algorithms which cannot be efficiently simulated classically, it is important to quantify the accuracy with which the computation has been performed. In this work we introduce a machine-learning-based technique to estimate the fidelity between the state produced by a noisy quantum circuit and the target state corresponding to ideal noise-free computation. Our machine learning model is trained in a supervised manner, using smaller or simpler circuits for which the fidelity can be estimated using other techniques like direct fidelity estimation and quantum state tomography. We demonstrate that, for simulated random quantum circuits with a realistic noise model, the trained model can predict the fidelities of more complicated circuits for which such methods are infeasible. In particular, we show the trained model may make predictions for circuits with higher degrees of entanglement than were available in the training set, and that the model may make predictions for non-Clifford circuits even when the training set included only Clifford-reducible circuits. This empirical demonstration suggests classical machine learning may be useful for making predictions about beyond-classical quantum circuits for some non-trivial problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源