论文标题

人类实施的深层层次结构生成学习,用于自动化城市规划

Human-instructed Deep Hierarchical Generative Learning for Automated Urban Planning

论文作者

Wang, Dongjie, Wu, Lingfei, Zhang, Denghui, Zhou, Jingbo, Sun, Leilei, Fu, Yanjie

论文摘要

城市规划的基本任务是生成目标区域的最佳土地利用配置。但是,传统的城市规划是耗时和劳动力密集的。深厚的生成学习使我们希望我们可以自动化这一计划过程并提出理想的城市计划。尽管已经取得了显着的成就,但它们在缺乏意识的局限性:1)功能区域和空间网格之间的层次依赖性; 2)功能区域之间的同伴依赖性; 3)人类法规,以确保生成配置的可用性。为了解决这些局限性,我们开发了一种新型的人类实践深层层次生成模型。我们从独特的功能角度重新考虑了城市规划生成的任务,我们将计划要求总结为不同的功能预测,以获得更好的城市计划。为此,我们开发了从目标区域到区域再到网格的三阶段生成过程。第一阶段是将目标区域的网格标记为潜在功能以发现功能区域。第二阶段是感知计划要求形成城市功能预测。我们提出了一个新型模块:功能化合物,将人类指示和地理空间环境的嵌入到区域级别的计划中,以获取此类预测。每个投影都包括土地利用投资组合的信息以及在特定城市功能方面的空间网格之间的结构依赖性。第三阶段是利用多音调来对功能投影的区域区域对等依赖性进行建模,以生成网格级的土地使用配置。最后,我们提出了广泛的实验,以证明框架的有效性。

The essential task of urban planning is to generate the optimal land-use configuration of a target area. However, traditional urban planning is time-consuming and labor-intensive. Deep generative learning gives us hope that we can automate this planning process and come up with the ideal urban plans. While remarkable achievements have been obtained, they have exhibited limitations in lacking awareness of: 1) the hierarchical dependencies between functional zones and spatial grids; 2) the peer dependencies among functional zones; and 3) human regulations to ensure the usability of generated configurations. To address these limitations, we develop a novel human-instructed deep hierarchical generative model. We rethink the urban planning generative task from a unique functionality perspective, where we summarize planning requirements into different functionality projections for better urban plan generation. To this end, we develop a three-stage generation process from a target area to zones to grids. The first stage is to label the grids of a target area with latent functionalities to discover functional zones. The second stage is to perceive the planning requirements to form urban functionality projections. We propose a novel module: functionalizer to project the embedding of human instructions and geospatial contexts to the zone-level plan to obtain such projections. Each projection includes the information of land-use portfolios and the structural dependencies across spatial grids in terms of a specific urban function. The third stage is to leverage multi-attentions to model the zone-zone peer dependencies of the functionality projections to generate grid-level land-use configurations. Finally, we present extensive experiments to demonstrate the effectiveness of our framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源