论文标题
通过及时学习,零射传出谣言检测,传播结构
Zero-Shot Rumor Detection with Propagation Structure via Prompt Learning
论文作者
论文摘要
在社交媒体时代,谣言的传播和突破事件严重阻碍了真相。先前的研究表明,由于缺乏带注释的资源,很难检测到以少数族裔语言提出的谣言。此外,昨天的新闻不涉及的不可预见的破坏事件加剧了数据资源的稀缺性。在这项工作中,我们提出了一个基于迅速学习的新颖零拍框架,以检测掉入不同领域或以不同语言呈现的谣言。更具体地说,我们首先代表在社交媒体上流传的谣言作为多样化的传播线程,然后设计一种层次结构的提示编码机制,以学习提示和谣言数据的语言 - 敏锐的上下文表示。为了进一步增强域的适应性,我们对传播线程中的域不变结构特征进行建模,以结合有影响力的社区响应的结构位置表示。此外,使用一种新的虚拟响应增强方法来改善模型培训。在三个现实世界数据集上进行的广泛实验表明,我们提出的模型的性能要比最先进的方法要好得多,并且在早期阶段表现出较高的检测谣言的能力。
The spread of rumors along with breaking events seriously hinders the truth in the era of social media. Previous studies reveal that due to the lack of annotated resources, rumors presented in minority languages are hard to be detected. Furthermore, the unforeseen breaking events not involved in yesterday's news exacerbate the scarcity of data resources. In this work, we propose a novel zero-shot framework based on prompt learning to detect rumors falling in different domains or presented in different languages. More specifically, we firstly represent rumor circulated on social media as diverse propagation threads, then design a hierarchical prompt encoding mechanism to learn language-agnostic contextual representations for both prompts and rumor data. To further enhance domain adaptation, we model the domain-invariant structural features from the propagation threads, to incorporate structural position representations of influential community response. In addition, a new virtual response augmentation method is used to improve model training. Extensive experiments conducted on three real-world datasets demonstrate that our proposed model achieves much better performance than state-of-the-art methods and exhibits a superior capacity for detecting rumors at early stages.