论文标题

差异通道估计和数据检测的变化贝叶斯在少量大型MIMO系统中

Variational Bayes for Joint Channel Estimation and Data Detection in Few-Bit Massive MIMO Systems

论文作者

Nguyen, Ly V., Swindlehurst, A. Lee, Nguyen, Duy H. N.

论文摘要

使用低分辨率类似于数字转换器(ADC)的大量多输入多输出(MIMO)通信是一种有前途的技术,可提供高光谱和能源效率,并具有负担得起的硬件成本和功耗。但是,低分辨率ADC的使用需要特殊的信号处理方法来进行通道估计和数据检测,因为所得系统非常非线性。本文提出了基于变分贝叶斯(VB)推理框架的大量MIMO系统的联合通道估计和数据检测方法。我们首先得出匹配的过滤器量化VB(MF-QVB)和线性最小均值误差量化量化VB(LMMSE-QVB)检测方法,假设可以使用通道状态信息(CSI)。然后,我们将这些方法扩展到关节通道估计和数据检测(JED)问题,并提出了两种我们称为MF-QVB-JED和LMMSE-QVB-JED的方法。与传统的基于VB的检测方法相比,假设添加噪声的二阶统计知识知识,我们建议将噪声方差/协方差矩阵浮动作为一种未知的随机变量,用于考虑噪声和残留的互动式用户干扰。我们还提出了QVB框架的实际方面,以提高其实施稳定性。最后,我们通过数值结果表明,所提出的基于VB的方法提供了稳健的性能,并且也明显优于现有方法。

Massive multiple-input multiple-output (MIMO) communications using low-resolution analog-to-digital converters (ADCs) is a promising technology for providing high spectral and energy efficiency with affordable hardware cost and power consumption. However, the use of low-resolution ADCs requires special signal processing methods for channel estimation and data detection since the resulting system is severely non-linear. This paper proposes joint channel estimation and data detection methods for massive MIMO systems with low-resolution ADCs based on the variational Bayes (VB) inference framework. We first derive matched-filter quantized VB (MF-QVB) and linear minimum mean-squared error quantized VB (LMMSE-QVB) detection methods assuming the channel state information (CSI) is available. Then we extend these methods to the joint channel estimation and data detection (JED) problem and propose two methods we refer to as MF-QVB-JED and LMMSE-QVB-JED. Unlike conventional VB-based detection methods that assume knowledge of the second-order statistics of the additive noise, we propose to float the noise variance/covariance matrix as an unknown random variable that is used to account for both the noise and the residual inter-user interference. We also present practical aspects of the QVB framework to improve its implementation stability. Finally, we show via numerical results that the proposed VB-based methods provide robust performance and also significantly outperform existing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源