论文标题
轴向杆:高频交易,轴向关注
Axial-LOB: High-Frequency Trading with Axial Attention
论文作者
论文摘要
先前试图从限制订单簿(LOB)数据中预测股票价格的尝试主要基于深度卷积神经网络。尽管卷积通过将其运营限制为本地互动来提供效率,但这是由于潜在地遗漏了远程依赖性的代价。最近的研究通过采用增加计算复杂性的其他复发或注意层来解决此问题。在这项工作中,我们提出了Axial-LOB,这是一种新型的全注意力深度学习体系结构,用于预测LOB数据的股票价格变动。通过利用门控位置敏感的轴向注意层,我们的体系结构能够构建包含全局相互作用的特征图,同时大大降低了参数空间的大小。与以前的作品不同,Axial-LOB不依赖手工制作的卷积内核,因此具有稳定的输入排列性能和结合其他LOB功能的能力。在大型基准数据集中证明了轴向杆的有效性,其中包含数百万高频交易事件的时间序列表示,我们的模型在所有测试的预测范围内都建立了新的最新技术状态,在所有测试的预测范围内实现了出色的定向分类性能。
Previous attempts to predict stock price from limit order book (LOB) data are mostly based on deep convolutional neural networks. Although convolutions offer efficiency by restricting their operations to local interactions, it is at the cost of potentially missing out on the detection of long-range dependencies. Recent studies address this problem by employing additional recurrent or attention layers that increase computational complexity. In this work, we propose Axial-LOB, a novel fully-attentional deep learning architecture for predicting price movements of stocks from LOB data. By utilizing gated position-sensitive axial attention layers our architecture is able to construct feature maps that incorporate global interactions, while significantly reducing the size of the parameter space. Unlike previous works, Axial-LOB does not rely on hand-crafted convolutional kernels and hence has stable performance under input permutations and the capacity to incorporate additional LOB features. The effectiveness of Axial-LOB is demonstrated on a large benchmark dataset, containing time series representations of millions of high-frequency trading events, where our model establishes a new state of the art, achieving an excellent directional classification performance at all tested prediction horizons.