论文标题
标量和矢量非本地非线性schrödinger方程中流氓波的特征
Characteristics of rogue waves in the scalar and vector nonlocal nonlinear Schrödinger equations
论文作者
论文摘要
在本文中,平均时间($ \ MATHCAL {P} \ MATHCAL {T} $)对称标量和耦合非局部非线性非线性Schrödinger方程(NLSES)的一般高级流氓波解决方案是通过理论上通过DARBOUX变换来计算可变性技术的。此外,为了更好地理解这些解决方案,可以清楚探索获得的解决方案的主要特征。我们的结果表明,这些解决方案的动力学表现出丰富的模式,其中大多数在相应的局部方程中没有对应。
In this paper, general higher-order rogue wave solutions of the parity-time ($\mathcal {P}\mathcal {T}$) symmetric scalar and coupled nonlocal nonlinear Schrödinger equations (NLSEs) are calculated theoretically via a Darboux transformation by a separation of variable technique. Furthermore, in order to understand these solutions better, the main characteristics of the obtained solutions are explored clearly and conveniently. Our results show that the dynamics of these solutions exhibits rich patterns, most of which have no counterparts in the corresponding local equations.