论文标题

使用时间域的热心度(TDTR)表征FER薄膜的非平衡响应

Characterizing the Nonequilibrium Response of FeRh Thin Films using Time-Domain Thermoreflectance (TDTR)

论文作者

Harton, Renee M., Ceballos, Alejandro, Unikandanunni, Vivek, Gray, Alexander, Bonetti, Stefano, Krüger, Peter, Hellman, Frances

论文摘要

FERH在其一阶抗铁磁(AF)对铁磁性(FM)过渡的整个一阶抗铁磁(AF)中表征的时间域热素反射(TDTR)表明,瞬态反射率,$δ$δ$ r(t)/r,很大程度上取决于样品的磁性。使用使用光脉冲诱导少量温度偏移的TDTR,我们发现AF相的$δ$ r(t)/r表现出较大的负响应,而FM相的响应为正响应。这种磁相灵敏度使我们能够研究AF和FM相对泵脉冲激发和材料混合相的瞬时响应。这些结果很重要,因为抗铁磁材料的超快特性以及混合的抗铁磁和铁磁材料很难使用其他常规技术检测到。 $δ$ r(t)/r的符号的磁相依赖性使用AB-Initio密度功能理论(DFT)计算的结果来定性解释。使用两个温度模型,我们发现整个过渡过程的热量时间的变化是由电子热容量和AF和FM相的电子偶联因子的差异引起的。还使用使用NTMPY代码软件包进行的两个温度模型来确定AF阶段中的电子偶联常数。对于FM相,我们为FM相提供了电子偶联因子的大小的边界。这些结果表明,TDTR可用于研究磁性材料的瞬态特性,而磁性材料原本具有挑战性。

Time-Domain Thermoreflectance (TDTR) characterization of FeRh throughout its first-order antiferromagnetic (AF) to ferromagnetic (FM) transition shows that the transient reflectance, $Δ$R(t)/R, strongly depends on the magnetic order of the sample. Using TDTR, which uses optical pulses to induce small temperature excursions, we have found that the $Δ$R(t)/R of the AF phase exhibits a large negative response, while the response of the FM phase is positive. This magnetic phase sensitivity has allowed us to study the transient response of both the AF and FM phase to the pump pulse excitation and the mixed phase of the material. These results are significant since the ultrafast properties of antiferromagnetic materials and mixed antiferromagnetic and ferromagnetic materials are difficult to detect using other conventional techniques.We have found that the AF phase exhibits a strong subpicosecond signal not observed in the FM phase. The magnetic phase dependence of the sign of $Δ$R(t)/R is qualitatively explained using the results of ab-initio density functional theory (DFT) calculations. Using the two-temperature model, we found that the change in the thermalization time across the transition is caused by differences in both the electronic heat capacity and the electron-phonon coupling factor of the AF and FM phases. The electron-phonon coupling constant in the AF phase is also determined using the two-temperature model conducted using the NTMpy code package. For the FM phase, we provide boundaries for the magnitude of the electron-phonon coupling factor for the FM phase. These results indicate that TDTR can be used to study the transient properties of magnetic materials that are otherwise challenging to probe.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源