论文标题
Pixel2ISDF:来自多景观图像的隐式签名的基于距离字段的人体模型
Pixel2ISDF: Implicit Signed Distance Fields based Human Body Model from Multi-view and Multi-pose Images
论文作者
论文摘要
在本报告中,我们专注于在规范空间中重建穿衣服的人,并以人类作为输入的多种视图和姿势。为了实现这一目标,我们利用SMPLX模型在规范空间中的几何事物来学习几何重建的隐式表示。基于这样的观察,即在规范空间中姿势的网格和网格之间的拓扑是一致的,我们建议通过利用多个输入图像,然后将潜在代码分配给规范空间中的网格,以学习姿势网格上的潜在代码。具体而言,我们首先利用正常和几何网络来提取SMPLX网格上每个顶点的特征向量。与2D图像相比,采用了正常地图以更好地概括地看不到图像。然后,来自多个图像的姿势网格上每个顶点的特征是由MLP集成的。充当潜在代码的集成特征固定在规范空间中的SMPLX网格上。最后,提取并利用每个3D点的潜在代码来计算SDF。我们在规范姿势上重建人形的工作在WCPA MVP-Human身体挑战方面取得了第三个表现。
In this report, we focus on reconstructing clothed humans in the canonical space given multiple views and poses of a human as the input. To achieve this, we utilize the geometric prior of the SMPLX model in the canonical space to learn the implicit representation for geometry reconstruction. Based on the observation that the topology between the posed mesh and the mesh in the canonical space are consistent, we propose to learn latent codes on the posed mesh by leveraging multiple input images and then assign the latent codes to the mesh in the canonical space. Specifically, we first leverage normal and geometry networks to extract the feature vector for each vertex on the SMPLX mesh. Normal maps are adopted for better generalization to unseen images compared to 2D images. Then, features for each vertex on the posed mesh from multiple images are integrated by MLPs. The integrated features acting as the latent code are anchored to the SMPLX mesh in the canonical space. Finally, latent code for each 3D point is extracted and utilized to calculate the SDF. Our work for reconstructing the human shape on canonical pose achieves 3rd performance on WCPA MVP-Human Body Challenge.