论文标题

量子局部模型中三色环的非平凡下限

Non-trivial lower bound for 3-coloring the ring in the quantum LOCAL model

论文作者

Gall, François Le, Rosmanis, Ansis

论文摘要

我们考虑了分布式计算的本地模型,其中在一轮通信中,每个节点都可以向其每个邻居发送任意大小的消息。众所周知,从经典上讲,$ n $ node环的圆形复杂性为$θ(\ log^*\!n)$。在通信是量子的情况下,只有琐碎的范围:至少必须进行一些交流。 我们研究了分布式算法,用于为仅执行单个单向通信的环着色。从经典上讲,已经知道这种有限的通信可以将所需颜色的数量从$θ(n)$减少到没有通信时,将所需颜色的数量减少到$θ(\ log n)$。在这项工作中,我们表明,在$ n $中,任何量子单一单向分布式算法的概率呈指数为小。

We consider the LOCAL model of distributed computing, where in a single round of communication each node can send to each of its neighbors a message of an arbitrary size. It is know that, classically, the round complexity of 3-coloring an $n$-node ring is $Θ(\log^*\!n)$. In the case where communication is quantum, only trivial bounds were known: at least some communication must take place. We study distributed algorithms for coloring the ring that perform only a single round of one-way communication. Classically, such limited communication is already known to reduce the number of required colors from $Θ(n)$, when there is no communication, to $Θ(\log n)$. In this work, we show that the probability of any quantum single-round one-way distributed algorithm to output a proper $3$-coloring is exponentially small in $n$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源