论文标题

用于小物体检测的高级Yolov3方法

An advanced YOLOv3 method for small object detection

论文作者

Liu, Baokai, He, Fengjie, Du, Shiqiang, Li, Jiacheng, Liu, Wenjie

论文摘要

小对象检测在自动驾驶和无人机场景分析领域具有重要的应用值。作为最先进的对象检测算法之一,Yolov3在检测小物体时会遇到一些挑战,例如小对象的检测失败和遮挡对象的问题。为了解决这些问题,提出了用于小物体检测的改进的Yolov3算法。在提出的方法中,将扩张的卷积杂音(DCM)模块引入到Yolov3的骨干网络中,以通过融合不同接收场的特征图来提高特征表达能力。在Yolov3的颈部网络中,引入了卷积块注意模块(CBAM)和多级融合模块,以选择在浅网络中的小物体检测的重要信息,抑制非批判性信息,并使用融合模块将不同尺度的特征图融合在一起,以提高Algorithm的检测准确性。此外,将软NMS和完整的IOU(CLOU)策略应用于候选框架筛选,这提高了算法检测闭塞物体的准确性。 MS COCO2017对象检测任务的消融实验证明了本文在本文中引入的几个模块的有效性,以供小对象检测。 MS COCO2017,VOC2007和VOC2012数据集的实验结果表明,该方法的平均精度(AP)分别比Yolov3的实验性(AP)分别高16.5%,8.71%和9.68%。

Small object detection has important application value in the fields of autonomous driving and drone scene analysis. As one of the most advanced object detection algorithms, YOLOv3 suffers some challenges when detecting small objects, such as the problem of detection failure of small objects and occluded objects. To solve these problems, an improved YOLOv3 algorithm for small object detection is proposed. In the proposed method, the dilated convolutions mish (DCM) module is introduced into the backbone network of YOLOv3 to improve the feature expression ability by fusing the feature maps of different receptive fields. In the neck network of YOLOv3, the convolutional block attention module (CBAM) and multi-level fusion module are introduced to select the important information for small object detection in the shallow network, suppress the uncritical information, and use the fusion module to fuse the feature maps of different scales, so as to improve the detection accuracy of the algorithm. In addition, the Soft-NMS and Complete-IoU (CloU) strategies are applied to candidate frame screening, which improves the accuracy of the algorithm for the detection of occluded objects. The ablation experiment of the MS COCO2017 object detection task proves the effectiveness of several modules introduced in this paper for small object detection. The experimental results on the MS COCO2017, VOC2007, and VOC2012 datasets show that the Average Precision (AP) of this method is 16.5%, 8.71%, and 9.68% higher than that of YOLOv3, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源