论文标题
99.92% - 固体中的Fidelity cnot门通过过滤时间依赖性和量子噪声
99.92%-Fidelity CNOT Gates in Solids by Filtering Time-dependent and Quantum Noises
论文作者
论文摘要
与储层的不可避免的相互作用在很大程度上降低了非本地门的性能,这阻碍了实用的量子计算的存在。在这里,我们在实验上证明了99.920(7)\% - 保真度控制的门通过在室温下抑制固态自旋系统中的复杂噪声。我们发现,在以前的作品中,仅考虑静态噪声而导致的富达有限为99 \%,因此,在这项工作中,还包括时间依赖的噪声和量子噪声。所有噪声都通过精心设计的形状脉冲动态纠正,从而使所产生的错误低于$ 10^{-4} $。残留栅极误差主要起源于纵向松弛和波形失真,这两者在技术上都可以进一步减少。我们的耐噪声方法是通用的,将使其他固态自旋系统受益。
Inevitable interactions with the reservoir largely degrade the performance of non-local gates, which hinders practical quantum computation from coming into existence. Here we experimentally demonstrate a 99.920(7)\%-fidelity controlled-NOT gate by suppressing the complicated noise in a solid-state spin system at room temperature. We found that the fidelity limited at 99\% in previous works results from only considering static noise, and thus, in this work, time-dependent noise and quantum noise are also included. All noises are dynamically corrected by an exquisitely designed shaped pulse, giving the resulting error below $10^{-4}$. The residual gate error is mainly originated from the longitudinal relaxation and the waveform distortion that can both be further reduced technically. Our noise-resistant method is universal, and will benefit other solid-state spin systems.